A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome

Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (2007)
JOURNAL OF BIOLOGICAL CHEMISTRY 282(17): 13011-13021.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
282
Ausgabe
17
Seite(n)
13011-13021
ISSN
eISSN
PUB-ID

Zitieren

Berndt A, Kottke T, Breitkreuz H, et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 2007;282(17):13011-13021.
Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., & Wolf, E. (2007). A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(17), 13011-13021. doi:10.1074/jbc.M608872200
Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., and Wolf, E. (2007). A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY 282, 13011-13021.
Berndt, A., et al., 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(17), p 13011-13021.
A. Berndt, et al., “A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, 2007, pp. 13011-13021.
Berndt, A., Kottke, T., Breitkreuz, H., Dvorsky, R., Hennig, S., Alexander, M., Wolf, E.: A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 282, 13011-13021 (2007).
Berndt, Alex, Kottke, Tilman, Breitkreuz, Helena, Dvorsky, Radovan, Hennig, Sven, Alexander, Michael, and Wolf, Eva. “A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome”. JOURNAL OF BIOLOGICAL CHEMISTRY 282.17 (2007): 13011-13021.

86 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photoreceptors Take Charge: Emerging Principles for Light Sensing.
Kottke T, Xie A, Larsen DS, Hoff WD., Annu Rev Biophys (), 2018
PMID: 29539272
Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
Lin C, Top D, Manahan CC, Young MW, Crane BR., Proc Natl Acad Sci U S A 115(15), 2018
PMID: 29581265
Circadian modulation of light-evoked avoidance/attraction behavior in Drosophila.
Baik LS, Recinos Y, Chevez JA, Holmes TC., PLoS One 13(8), 2018
PMID: 30106957
Comparative properties and functions of type 2 and type 4 pigeon cryptochromes.
Wang X, Jing C, Selby CP, Chiou YY, Yang Y, Wu W, Sancar A, Wang J., Cell Mol Life Sci 75(24), 2018
PMID: 30264181
Delocalized hole transport coupled to sub-ns tryptophanyl deprotonation promotes photoreduction of class II photolyases.
Lacombat F, Espagne A, Dozova N, Plaza P, Ignatz E, Kiontke S, Essen LO., Phys Chem Chem Phys 20(39), 2018
PMID: 30272080
The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
Kutta RJ, Archipowa N, Scrutton NS., Phys Chem Chem Phys 20(45), 2018
PMID: 30417904
CRYPTOCHROME mediates behavioral executive choice in response to UV light.
Baik LS, Fogle KJ, Roberts L, Galschiodt AM, Chevez JA, Recinos Y, Nguy V, Holmes TC., Proc Natl Acad Sci U S A 114(4), 2017
PMID: 28062690
Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle.
Arthaut LD, Jourdan N, Mteyrek A, Procopio M, El-Esawi M, d'Harlingue A, Bouchet PE, Witczak J, Ritz T, Klarsfeld A, Birman S, Usselman RJ, Hoecker U, Martino CF, Ahmad M., PLoS One 12(3), 2017
PMID: 28296892
Vertebrate Cryptochromes are Vestigial Flavoproteins.
Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS., Sci Rep 7(), 2017
PMID: 28317918
Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
Wiltschko R, Ahmad M, Nießner C, Gehring D, Wiltschko W., J R Soc Interface 13(118), 2016
PMID: 27146685
Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.
Oldemeyer S, Franz S, Wenzel S, Essen LO, Mittag M, Kottke T., J Biol Chem 291(27), 2016
PMID: 27189948
Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.
Procopio M, Link J, Engle D, Witczak J, Ritz T, Ahmad M., Front Plant Sci 7(), 2016
PMID: 27446119
Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.
Nohr D, Franz S, Rodriguez R, Paulus B, Essen LO, Weber S, Schleicher E., Biophys J 111(2), 2016
PMID: 27463133
Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
Ganguly A, Manahan CC, Top D, Yee EF, Lin C, Young MW, Thiel W, Crane BR., Proc Natl Acad Sci U S A 113(36), 2016
PMID: 27551082
Intrinsic Photosensitivity Enhances Motility of T Lymphocytes.
Phan TX, Jaruga B, Pingle SC, Bandyopadhyay BC, Ahern GP., Sci Rep 6(), 2016
PMID: 27995987
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J Biol Chem 290(3), 2015
PMID: 25471375
CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor.
Fogle KJ, Baik LS, Houl JH, Tran TT, Roberts L, Dahm NA, Cao Y, Zhou M, Holmes TC., Proc Natl Acad Sci U S A 112(7), 2015
PMID: 25646452
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J 282(16), 2015
PMID: 25879256
Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen.
van Wilderen LJ, Silkstone G, Mason M, van Thor JJ, Wilson MT., FEBS Open Bio 5(), 2015
PMID: 26649273
A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion.
Lazopulo S, Lopez JA, Levy P, Syed S., PLoS One 10(11), 2015
PMID: 26528813
Both the anterior and posterior eyes function as photoreceptors for photoperiodic termination of diapause in the two-spotted spider mite.
Hori Y, Numata H, Shiga S, Goto SG., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(2), 2014
PMID: 24309746
Interactive features of proteins composing eukaryotic circadian clocks.
Crane BR, Young MW., Annu Rev Biochem 83(), 2014
PMID: 24905781
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
Wiltschko R, Wiltschko W., Biosensors (Basel) 4(3), 2014
PMID: 25587420
Photochemistry of flavoprotein light sensors.
Conrad KS, Manahan CC, Crane BR., Nat Chem Biol 10(10), 2014
PMID: 25229449
Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
Nießner C, Denzau S, Peichl L, Wiltschko W, Wiltschko R., J Exp Biol 217(pt 23), 2014
PMID: 25472972
Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.
Wiltschko R, Gehring D, Denzau S, Nießner C, Wiltschko W., J Exp Biol 217(pt 23), 2014
PMID: 25472973
Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster.
Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP., PLoS Genet 10(12), 2014
PMID: 25473952
Variable electron transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs.
Biskup T, Paulus B, Okafuji A, Hitomi K, Getzoff ED, Weber S, Schleicher E., J Biol Chem 288(13), 2013
PMID: 23430261
Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
Vinayak P, Coupar J, Hughes SE, Fozdar P, Kilby J, Garren E, Yoshii T, Hirsh J., PLoS Genet 9(7), 2013
PMID: 23874218
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
Dodson CA, Hore PJ, Wallace MI., Trends Biochem Sci 38(9), 2013
PMID: 23938034
Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R., J R Soc Interface 10(88), 2013
PMID: 23966619
Flavin reduction activates Drosophila cryptochrome.
Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S, Pollack L, Young MW, Crane BR., Proc Natl Acad Sci U S A 110(51), 2013
PMID: 24297896
Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
Solov'yov IA, Schulten K., J Phys Chem B 116(3), 2012
PMID: 22171949
Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.
Vieira J, Jones AR, Danon A, Sakuma M, Hoang N, Robles D, Tait S, Heyes DJ, Picot M, Yoshii T, Helfrich-Förster C, Soubigou G, Coppee JY, Klarsfeld A, Rouyer F, Scrutton NS, Ahmad M., PLoS One 7(3), 2012
PMID: 22427812
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H., Biochemistry 51(29), 2012
PMID: 22747528
Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M., Angew Chem Int Ed Engl 51(37), 2012
PMID: 22890584
Reaction mechanism of Drosophila cryptochrome.
Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A., Proc Natl Acad Sci U S A 108(2), 2011
PMID: 21187431
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Indication for a radical intermediate preceding the signaling state in the LOV domain photocycle.
Bauer C, Rabl CR, Heberle J, Kottke T., Photochem Photobiol 87(3), 2011
PMID: 21255020
CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
Fogle KJ, Parson KG, Dahm NA, Holmes TC., Science 331(6023), 2011
PMID: 21385718
Post-translational timing mechanisms of the Drosophila circadian clock.
Weber F, Zorn D, Rademacher C, Hung HC., FEBS Lett 585(10), 2011
PMID: 21486567
Introduction to the Symposium-in Print: Blue light effects.
Gärtner W, Hegemann P., Photochem Photobiol 87(3), 2011
PMID: 21517885
Structure of full-length Drosophila cryptochrome.
Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR., Nature 480(7377), 2011
PMID: 22080955
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C., Proc Natl Acad Sci U S A 108(51), 2011
PMID: 22139370
Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
Liedvogel M, Mouritsen H., J R Soc Interface 7 Suppl 2(), 2010
PMID: 19906675
The Electronic State of Flavoproteins: Investigations with Proton Electron-Nuclear Double Resonance.
Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen LO, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuji A., Appl Magn Reson 37(1-4), 2010
PMID: 26089595
Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
Gegear RJ, Foley LE, Casselman A, Reppert SM., Nature 463(7282), 2010
PMID: 20098414
Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa.
Froehlich AC, Chen CH, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC., Eukaryot Cell 9(5), 2010
PMID: 20305004
Reaction mechanisms of DNA photolyase.
Brettel K, Byrdin M., Curr Opin Struct Biol 20(6), 2010
PMID: 20705454
The Cryptochrome Blue Light Receptors.
Yu X, Liu H, Klejnot J, Lin C., Arabidopsis Book 8(), 2010
PMID: 21841916
Action spectrum for the suppression of arylalkylamine N-acetyltransferase activity in the two-spotted spider mite Tetranychus urticae.
Suzuki T, Izawa N, Takashima T, Watanabe M, Takeda M., Photochem Photobiol 85(1), 2009
PMID: 18764905
Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor.
Biskup T, Schleicher E, Okafuji A, Link G, Hitomi K, Getzoff ED, Weber S., Angew Chem Int Ed Engl 48(2), 2009
PMID: 19058271
Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
Yoshii T, Ahmad M, Helfrich-Förster C., PLoS Biol 7(4), 2009
PMID: 19355790
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes.
Hitomi K, DiTacchio L, Arvai AS, Yamamoto J, Kim ST, Todo T, Tainer JA, Iwai S, Panda S, Getzoff ED., Proc Natl Acad Sci U S A 106(17), 2009
PMID: 19359474
Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri.
Usman A, Brazard J, Martin MM, Plaza P, Heijde M, Zabulon G, Bowler C., J Photochem Photobiol B 96(1), 2009
PMID: 19427226
Distinct recognition loop dynamics in cryptochrome-DASH and photolyase revealed by limited proteolysis.
McLeod NR, Brolich MA, Damiani MJ, O'Neill MA., Biochem Biophys Res Commun 385(3), 2009
PMID: 19477164
Photoreduction of the folate cofactor in members of the photolyase family.
Moldt J, Pokorny R, Orth C, Linne U, Geisselbrecht Y, Marahiel MA, Essen LO, Batschauer A., J Biol Chem 284(32), 2009
PMID: 19531478
Comparative photochemistry of animal type 1 and type 4 cryptochromes.
Ozturk N, Selby CP, Song SH, Ye R, Tan C, Kao YT, Zhong D, Sancar A., Biochemistry 48(36), 2009
PMID: 19663499
Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT., Mol Plant 1(1), 2008
PMID: 20031923
Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors.
Domratcheva T, Grigorenko BL, Schlichting I, Nemukhin AV., Biophys J 94(10), 2008
PMID: 18263659
Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
Zikihara K, Ishikawa T, Todo T, Tokutomi S., Photochem Photobiol 84(4), 2008
PMID: 18494763
Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
Kao YT, Tan C, Song SH, Oztürk N, Li J, Wang L, Sancar A, Zhong D., J Am Chem Soc 130(24), 2008
PMID: 18500802
Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R, Ahmad M., PLoS Biol 6(7), 2008
PMID: 18597555
Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy.
Bonetti C, Mathes T, van Stokkum IH, Mullen KM, Groot ML, van Grondelle R, Hegemann P, Kennis JT., Biophys J 95(10), 2008
PMID: 18708458
Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.
Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H., PLoS One 2(10), 2007
PMID: 17971869

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17298948
PubMed | Europe PMC

Suchen in

Google Scholar