Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism

Kurtz R (2007)
NEUROSCIENCE 146(2): 573-583.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.29 MB
Stichworte
K+-channels; after-hyperpolarization; caged Ca2+; Ca2+-activated; blowfly; visual system; input resistance
Erscheinungsjahr
2007
Zeitschriftentitel
NEUROSCIENCE
Band
146
Ausgabe
2
Seite(n)
573-583
ISSN
0306-4522
Page URI
https://pub.uni-bielefeld.de/record/1593840

Zitieren

Kurtz R. Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. NEUROSCIENCE. 2007;146(2):573-583.
Kurtz, R. (2007). Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. NEUROSCIENCE, 146(2), 573-583. https://doi.org/10.1016/j.neuroscience.2007.01.058
Kurtz, Rafael. 2007. “Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism”. NEUROSCIENCE 146 (2): 573-583.
Kurtz, R. (2007). Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. NEUROSCIENCE 146, 573-583.
Kurtz, R., 2007. Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. NEUROSCIENCE, 146(2), p 573-583.
R. Kurtz, “Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism”, NEUROSCIENCE, vol. 146, 2007, pp. 573-583.
Kurtz, R.: Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism. NEUROSCIENCE. 146, 573-583 (2007).
Kurtz, Rafael. “Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism”. NEUROSCIENCE 146.2 (2007): 573-583.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:02Z
MD5 Prüfsumme
c0d79b97224aad9283534913c4ea16ae


11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
A neuronally based model of contrast gain adaptation in fly motion vision.
Rivera-Alvidrez Z, Lin I, Higgins CM., Vis Neurosci 28(5), 2011
PMID: 21854701
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordström K, O'Carroll DC., Curr Biol 20(11), 2010
PMID: 20537540
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
The motion after-effect: local and global contributions to contrast sensitivity.
Nordström K, O'Carroll DC., Proc Biol Sci 276(1662), 2009
PMID: 19324825
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc Biol Sci 276(1673), 2009
PMID: 19656791
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090

61 References

Daten bereitgestellt von Europe PubMed Central.

Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex.
Anderson JS, Carandini M, Ferster D., J. Neurophysiol. 84(2), 2000
PMID: 10938316
For K+ channels, Na+ is the new Ca2+.
Bhattacharjee A, Kaczmarek LK., Trends Neurosci. 28(8), 2005
PMID: 15979166
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Adaptation without parameter change: Dynamic gain control in motion detection.
Borst A, Flanagin VL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 102(17), 2005
PMID: 15833815
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Visual cortex: Fatigue and adaptation.
Carandini M., Curr. Biol. 10(16), 2000
PMID: 10985379
A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
Carandini M, Ferster D., Science 276(5314), 1997
PMID: 9139658
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex.
Crowder NA, Price NS, Hietanen MA, Dreher B, Clifford CW, Ibbotson MR., J. Neurophysiol. 95(1), 2005
PMID: 16192327
Dynamics of neuronal sensitivity in visual cortex and local feature discrimination.
Dragoi V, Sharma J, Miller EK, Sur M., Nat. Neurosci. 5(9), 2002
PMID: 12161755
Adaptation-induced plasticity of orientation tuning in adult visual cortex.
Dragoi V, Sharma J, Sur M., Neuron 28(1), 2000
PMID: 11087001
The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert, J Comp Physiol [A] 143(), 1981
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert, J Insect Physiol 29(), 1983
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Novel approaches to visual information processing in insects: case studies on neuronal computations in the blowfly
Egelhaaf, 2005
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Adaptation in vertebrate photoreceptors.
Fain GL, Matthews HR, Cornwall MC, Koutalos Y., Physiol. Rev. 81(1), 2001
PMID: 11152756
Adaptation in auditory hair cells.
Fettiplace R, Ricci AJ., Curr. Opin. Neurobiol. 13(4), 2003
PMID: 12965292
Visual control of locomotion in walking fruitfly Drosophila
Götz, J Comp Physiol 85(), 1973
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly: I
Hausen, Biol Cybern 45(), 1982
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg, J Comp Physiol [A] 149(), 1982
Neuronal basis of the motion aftereffect reconsidered.
Huk AC, Ress D, Heeger DJ., Neuron 32(1), 2001
PMID: 11604147
Adaptation to visual motion in directional neurons of the nucleus of the optic tract.
Ibbotson MR, Clifford CW, Mark RF., J. Neurophysiol. 79(3), 1998
PMID: 9497426
Evidence for a sensitising pigment in fly photoreceptors.
Kirschfeld K, Franceschini N, Minke B., Nature 269(5627), 1977
PMID: 909585
Adaptation changes the direction tuning of macaque MT neurons.
Kohn A, Movshon JA., Nat. Neurosci. 7(7), 2004
PMID: 15195097
Adaptation: from single cells to BOLD signals.
Krekelberg B, Boynton GM, van Wezel RJ., Trends Neurosci. 29(5), 2006
PMID: 16529826
Mechanism of odorant adaptation in the olfactory receptor cell.
Kurahashi T, Menini A., Nature 385(6618), 1997
PMID: 9034189
Calcium activates two types of potassium channels in rat hippocampal neurons in culture.
Lancaster B, Nicoll RA, Perkel DJ., J. Neurosci. 11(1), 1991
PMID: 1986065
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc R Soc Lond B Biol Sci 228(), 1985
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc. Biol. Sci. 272(1578), 2005
PMID: 16191636
Mechanisms of dendritic calcium signaling in fly neurons.
Oertner TG, Brotz TM, Borst A., J. Neurophysiol. 85(1), 2001
PMID: 11152745
Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro.
Osmanovic SS, Shefner SA., J. Physiol. (Lond.) 469(), 1993
PMID: 7903697
Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818164
Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818163
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Different mechanisms of calcium entry within different dendritic compartments.
Single S, Borst A., J. Neurophysiol. 87(3), 2002
PMID: 11877530
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
The waterfall illusion in an insect visual system.
Srinivasan MV, Dvorak DR., Vision Res. 19(12), 1979
PMID: 575245
Motion processing in the macaque: revisited with functional magnetic resonance imaging.
Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK., J. Neurosci. 21(21), 2001
PMID: 11606647
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17367948
PubMed | Europe PMC

Suchen in

Google Scholar