Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus)

Brummelte S, Witte V, Teuchert-Noodt G (2007)
International Journal of Developmental Neuroscience 25(3): 191-200.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Brummelte, Susanne; Witte, Veronica; Teuchert-Noodt, GertraudUniBi
Abstract / Bemerkung
The postnatal maturation of immunohistochemically stained gamma-amino-butyric acid (GABA) and calbindin (CB) cells and fibers were quantitatively examined in the prefrontal cortex (PFC) and the basolateral amygdala (BLA) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile (postnatal day (PD)14, PD20, PD30), to adolescent (PD70), adult (PD180, PD540) and aged (PD720) were analyzed. Results reveal an increase in GABAergic fiber densities between PD14-20 in the PFC and the BLA with a concomitant decrease in cell density. After PD70 GABA fiber density slightly decreases again in the BLA, while there is a further slow but significant increase in the PFC between PD70 and PD540. Fibers immunoreactive for the calcium binding-protein CB, which is predominantly localized in particular GABAergic subpopulations, also accumulate between PD14 and PD20 in the PFC and BLA, while a concomitant decrease in cell density is only seen in the BLA. Both areas reveal a decrease of CB cells between PD30 and PD70, which parallels with a decrease of CB fibers in the PFC. However, there is no particular 'aging-effect' in the fiber or cell densities of GABA or CB in any of the investigated areas in old animals. In conclusion, we here demonstrate long-term dynamics in cell and fiber densities of the GABAergic system until late in development which might correspond to the prolonged maturation of other neuroanatomical and functional systems. (C) 2007 ISDN. Published by Elsevier Ltd. All rights reserved.
Stichworte
limbic system; immunohistochemistry; gamma-amino-butyric acid; calbindin; calcium-binding proteins; development
Erscheinungsjahr
2007
Zeitschriftentitel
International Journal of Developmental Neuroscience
Band
25
Ausgabe
3
Seite(n)
191-200
ISSN
0736-5748
Page URI
https://pub.uni-bielefeld.de/record/1593698

Zitieren

Brummelte S, Witte V, Teuchert-Noodt G. Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience. 2007;25(3):191-200.
Brummelte, S., Witte, V., & Teuchert-Noodt, G. (2007). Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience, 25(3), 191-200. https://doi.org/10.1016/j.ijdevneu.2007.01.002
Brummelte, Susanne, Witte, Veronica, and Teuchert-Noodt, Gertraud. 2007. “Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus)”. International Journal of Developmental Neuroscience 25 (3): 191-200.
Brummelte, S., Witte, V., and Teuchert-Noodt, G. (2007). Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience 25, 191-200.
Brummelte, S., Witte, V., & Teuchert-Noodt, G., 2007. Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience, 25(3), p 191-200.
S. Brummelte, V. Witte, and G. Teuchert-Noodt, “Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus)”, International Journal of Developmental Neuroscience, vol. 25, 2007, pp. 191-200.
Brummelte, S., Witte, V., Teuchert-Noodt, G.: Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). International Journal of Developmental Neuroscience. 25, 191-200 (2007).
Brummelte, Susanne, Witte, Veronica, and Teuchert-Noodt, Gertraud. “Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus)”. International Journal of Developmental Neuroscience 25.3 (2007): 191-200.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear.
Kim JH, Perry CJ, Ganella DE, Madsen HB., Neurobiol Learn Mem 138(), 2017
PMID: 27818267
Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.
Barrett CE, Hennessey TM, Gordon KM, Ryan SJ, McNair ML, Ressler KJ, Rainnie DG., Mol Autism 8(), 2017
PMID: 28775827
Plasticity-related genes in brain development and amygdala-dependent learning.
Ehrlich DE, Josselyn SA., Genes Brain Behav 15(1), 2016
PMID: 26419764
The basolateral amygdala γ-aminobutyric acidergic system in health and disease.
Prager EM, Bergstrom HC, Wynn GH, Braga MF., J Neurosci Res 94(6), 2016
PMID: 26586374
Postnatal maturation of GABAergic transmission in the rat basolateral amygdala.
Ehrlich DE, Ryan SJ, Hazra R, Guo JD, Rainnie DG., J Neurophysiol 110(4), 2013
PMID: 23719209

99 References

Daten bereitgestellt von Europe PubMed Central.

The catecholaminergic innervation of the rat amygdala.
Asan E., Adv Anat Embryol Cell Biol 142(), 1998
PMID: 9586282
Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study.
Bacon SJ, Headlam AJ, Gabbott PL, Smith AD., Brain Res. 720(1-2), 1996
PMID: 8782914
Calcium-binding proteins in the nervous system.
Baimbridge KG, Celio MR, Rogers JH., Trends Neurosci. 15(8), 1992
PMID: 1384200
Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17).
Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A., Cereb. Cortex 2(4), 1992
PMID: 1330121
GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder.
Benes FM, Berretta S., Neuropsychopharmacology 25(1), 2001
PMID: 11377916
Dopamine-containing systems in the CNS
Björklund, 1984
Long-term effects of a single adult methamphetamine challenge: minor impact on dopamine fibre density in limbic brain areas of gerbils.
Brummelte S, Grund T, Czok A, Teuchert-Noodt G, Neddens J., Behav Brain Funct 2(), 2006
PMID: 16569246

AUTHOR UNKNOWN, 0
Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system.
Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK., Neuroscience 93(1), 1999
PMID: 10430494
Calbindin D-28k and parvalbumin in the rat nervous system.
Celio MR., Neuroscience 35(2), 1990
PMID: 2199841
Nervous system reorganization following injury.
Chen R, Cohen LG, Hallett M., Neuroscience 111(4), 2002
PMID: 12031403
GABA: an excitatory transmitter in early postnatal life.
Cherubini E, Gaiarsa JL, Ben-Ari Y., Trends Neurosci. 14(12), 1991
PMID: 1726341
Development of GABA-accumulating neurons and glial cells in the rat visual cortex.
Chronwall BM, Wolff JR., Adv. Biochem. Psychopharmacol. 29(), 1981
PMID: 7257939
A role for inhibition in shaping the temporal flow of information in prefrontal cortex.
Constantinidis C, Williams GV, Goldman-Rakic PS., Nat. Neurosci. 5(2), 2002
PMID: 11802172
Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex.
Davila JC, Real MA, Olmos L, Legaz I, Medina L, Guirado S., J. Comp. Neurol. 481(1), 2005
PMID: 15558732
Pharmacologically induced neural plasticity in the prefrontal cortex of adult gerbils (Meriones unguiculatus).
Dawirs RR, Teuchert-Noodt G, Nossoll M., Eur. J. Pharmacol. 327(2-3), 1997
PMID: 9200549
Development of GABA-immunoreactivity in the neocortex of the mouse.
Del Rio JA, Soriano E, Ferrer I., J. Comp. Neurol. 326(4), 1992
PMID: 1484122
Distribution of monoamines within the amygdala
Fallon, 1992
Loss of calbindin-D28k from aging human cholinergic basal forebrain: relation to neuronal loss.
Geula C, Bu J, Nagykery N, Scinto LF, Chan J, Joseph J, Parker R, Wu CK., J. Comp. Neurol. 455(2), 2003
PMID: 12454989
Two networks of electrically coupled inhibitory neurons in neocortex.
Gibson JR, Beierlein M, Connors BW., Nature 402(6757), 1999
PMID: 10573419
Critical period mechanisms in developing visual cortex.
Hensch TK., Curr. Top. Dev. Biol. 69(), 2005
PMID: 16243601
Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns.
Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM., J. Chem. Neuroanat. 16(2), 1999
PMID: 10223310
Experience-dependent and cell-type-specific spine growth in the neocortex.
Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K., Nature 441(7096), 2006
PMID: 16791195
Age-related change of calbindin D-28k immunoreactive neurons in the rat main olfactory bulb.
Hwang IK, Kang TC, Lee JC, Lee IS, Park SK, An SJ, Jeong YG, Seo JG, Oh YS, Won MH., Neurosci. Lett. 326(3), 2002
PMID: 12095646
Loss of calbindin-28K immunoreactive neurones from the cortex in Alzheimer-type dementia.
Ichimiya Y, Emson PC, Mountjoy CQ, Lawson DE, Heizmann CW., Brain Res. 475(1), 1988
PMID: 3214722
Effects of age on GABA turnover rates in specific hypothalamic areas in female rats.
Jarry H, Wise PM, Leonhardt S, Wuttke W., Exp. Clin. Endocrinol. Diabetes 107(1), 1999
PMID: 10077357
Development of the dopaminergic innervation in the prefrontal cortex of the rat.
Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB., J. Comp. Neurol. 269(1), 1988
PMID: 3361004
Age-related changes of calbindin-D28k, calretinin, and parvalbumin mRNAs in the hamster brain.
Kishimoto J, Tsuchiya T, Cox H, Emson PC, Nakayama Y., Neurobiol. Aging 19(1), 1998
PMID: 9562507
Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.
Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P., Nature 421(6925), 2003
PMID: 12594513
Calcium homeostasis in ageing: studies on the calcium binding protein calbindin D28K.
Lally G, Faull RL, Waldvogel HJ, Ferrari S, Emson PC., J Neural Transm (Vienna) 104(10), 1997
PMID: 9503262
Cortical inhibitory neurons and schizophrenia.
Lewis DA, Hashimoto T, Volk DW., Nat. Rev. Neurosci. 6(4), 2005
PMID: 15803162
Calmodulin and calbindin D28K in Alzheimer disease.
McLachlan DR, Wong L, Bergeron C, Baimbridge KG., Alzheimer Dis Assoc Disord 1(3), 1987
PMID: 2840101
Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation.
Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D., Neuroscience 8(1), 1983
PMID: 6835522
Differences between somatic and dendritic inhibition in the hippocampus.
Miles R, Toth K, Gulyas AI, Hajos N, Freund TF., Neuron 16(4), 1996
PMID: 8607999
Development of projection and local circuit neurons in neocortex
Miller, 1988
The basolateral amygdaloid complex--its development, morphology and functions.
Morys J, Berdel B, Jagalska-Majewska H, Luczynska A., Folia Morphol. (Warsz) 58(3 Suppl 2), 1999
PMID: 10959259
Neuronal development in human prefrontal cortex in prenatal and postnatal stages.
Mrzljak L, Uylings HB, Van Eden CG, Judas M., Prog. Brain Res. 85(), 1990
PMID: 2094894
Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus.
Muller JF, Mascagni F, McDonald AJ., J. Comp. Neurol. 456(3), 2003
PMID: 12528187
Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala.
Muller JF, Mascagni F, McDonald AJ., J. Neurosci. 25(32), 2005
PMID: 16093387
Synaptic plasticity in the red nucleus and learning.
Murakami F, Oda Y, Tsukahara N., Behav. Brain Res. 28(1-2), 1988
PMID: 3382510
Neurotransmitters as early signals for central nervous system development.
Nguyen L, Rigo JM, Rocher V, Belachew S, Malgrange B, Rogister B, Leprince P, Moonen G., Cell Tissue Res. 305(2), 2001
PMID: 11545256
Development of GABA-containing neurons in the visual cortex.
Parnavelas JG., Prog. Brain Res. 90(), 1992
PMID: 1631311

Paxinos, 1986
Appearance of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain.
Seto-Ohshima A, Aoki E, Semba R, Emson PC, Heizmann CW., Histochemistry 94(6), 1990
PMID: 2279955
Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons.
Tamas G, Buhl EH, Lorincz A, Somogyi P., Nat. Neurosci. 3(4), 2000
PMID: 10725926
Neuronal degeneration and reorganization: a mutual principle in pathological and in healthy interactions of limbic and prefrontal circuits
Teuchert-Noodt, J. Neural Transm. Suppl. (), 2000
The gerbil in behavioral investigations
Thiessen, 1977
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex.
Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K., Nature 420(6917), 2002
PMID: 12490942

Valverde, 1998
Prenatal development of GABA-ergic neurons in the neocortex of the rat.
Van Eden CG, Mrzljak L, Voorn P, Uylings HB., J. Comp. Neurol. 289(2), 1989
PMID: 2808764
Postnatal volumetric development of the prefrontal cortex in the rat.
Van Eden CG, Uylings HB., J. Comp. Neurol. 241(3), 1985
PMID: 4086657
Postnatal maturation of GABA-immunoreactive neurons of rat medial prefrontal cortex.
Vincent SL, Pabreza L, Benes FM., J. Comp. Neurol. 355(1), 1995
PMID: 7636016
Development of GABA-ergic system in rat visual cortex.
Wolff JR, Balcar VJ, Zetzsche T, Bottcher H, Schmechel DE, Chronwall BM., Adv. Exp. Med. Biol. 181(), 1984
PMID: 6099691
Morphogenetic relations between cell migration and synaptogenesis in the neocortex of rat
Wolff, Proc. Eur. Soc. Neurochem. 1(), 1978
Modulation by GABA of neuroplasticity in the central and peripheral nervous system.
Wolff JR, Joo F, Kasa P., Neurochem. Res. 18(4), 1993
PMID: 8474568
Age-related loss of calbindin from human basal forebrain cholinergic neurons.
Wu CK, Mesulam MM, Geula C., Neuroreport 8(9-10), 1997
PMID: 9243613
Activity-dependent synaptogenesis in the adult Mammalian cortex.
Zito K, Svoboda K., Neuron 35(6), 2002
PMID: 12354392
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17350213
PubMed | Europe PMC

Suchen in

Google Scholar