Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome

Immeln D, Schlesinger R, Heberle J, Kottke T (2007)
JOURNAL OF BIOLOGICAL CHEMISTRY 282(30): 21720-21728.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Immeln, Dominik; Schlesinger, Ramona; Heberle, Joachim; Kottke, TilmanUniBi
Erscheinungsjahr
2007
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
282
Ausgabe
30
Seite(n)
21720-21728
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/1593476

Zitieren

Immeln D, Schlesinger R, Heberle J, Kottke T. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 2007;282(30):21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., & Kottke, T. (2007). Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(30), 21720-21728. https://doi.org/10.1074/jbc.M700849200
Immeln, Dominik, Schlesinger, Ramona, Heberle, Joachim, and Kottke, Tilman. 2007. “Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome”. JOURNAL OF BIOLOGICAL CHEMISTRY 282 (30): 21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., and Kottke, T. (2007). Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY 282, 21720-21728.
Immeln, D., et al., 2007. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(30), p 21720-21728.
D. Immeln, et al., “Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, 2007, pp. 21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., Kottke, T.: Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 282, 21720-21728 (2007).
Immeln, Dominik, Schlesinger, Ramona, Heberle, Joachim, and Kottke, Tilman. “Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome”. JOURNAL OF BIOLOGICAL CHEMISTRY 282.30 (2007): 21720-21728.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
Eckel M, Steinchen W, Batschauer A., Plant J 96(2), 2018
PMID: 30044014
A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle.
Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M., Plant Physiol 174(1), 2017
PMID: 28360233
An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle.
Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M., Plant Physiol 174(3), 2017
PMID: 28468769
Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
Liu B, Yang Z, Gomez A, Liu B, Lin C, Oka Y., J Plant Res 129(2), 2016
PMID: 26810763
Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.
Oldemeyer S, Franz S, Wenzel S, Essen LO, Mittag M, Kottke T., J Biol Chem 291(27), 2016
PMID: 27189948
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J Biol Chem 290(3), 2015
PMID: 25471375
Plant flavoprotein photoreceptors.
Christie JM, Blackwood L, Petersen J, Sullivan S., Plant Cell Physiol 56(3), 2015
PMID: 25516569
Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M., Plant Signal Behav 10(9), 2015
PMID: 26313597
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C., FEBS J 281(9), 2014
PMID: 24628952
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S., Planta 240(4), 2014
PMID: 25048444
Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M., Plant Cell 26(11), 2014
PMID: 25428980
News about cryptochrome photoreceptors in algae.
Beel B, Müller N, Kottke T, Mittag M., Plant Signal Behav 8(2), 2013
PMID: 23154511
Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A., Plant J 74(4), 2013
PMID: 23398192
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.
Rea G, Lambreva M, Polticelli F, Bertalan I, Antonacci A, Pastorelli S, Damasso M, Johanningmeier U, Giardi MT., PLoS One 6(1), 2011
PMID: 21249156
How the green alga Chlamydomonas reinhardtii keeps time.
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M., Protoplasma 244(1-4), 2010
PMID: 20174954
The Cryptochrome Blue Light Receptors.
Yu X, Liu H, Klejnot J, Lin C., Arabidopsis Book 8(), 2010
PMID: 21841916
Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.
Burney S, Hoang N, Caruso M, Dudkin EA, Ahmad M, Bouly JP., FEBS Lett 583(9), 2009
PMID: 19327354
Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
Zirak P, Penzkofer A, Moldt J, Pokorny R, Batschauer A, Essen LO., J Photochem Photobiol B 97(2), 2009
PMID: 19800811
Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
Zikihara K, Ishikawa T, Todo T, Tokutomi S., Photochem Photobiol 84(4), 2008
PMID: 18494763
Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
Kao YT, Tan C, Song SH, Oztürk N, Li J, Wang L, Sancar A, Zhong D., J Am Chem Soc 130(24), 2008
PMID: 18500802
Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean.
Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C., Proc Natl Acad Sci U S A 105(52), 2008
PMID: 19106300

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 17548357
PubMed | Europe PMC

Suchen in

Google Scholar