Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production

Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007)
J. Biotechnol. 131 131(1): 27-33.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Phototrophic organisms use photosynthesis to convert solar energy into chemical energy. In nature, the chemical energy is stored in a diverse range of biopolymers. These sunlight-derived, energy-rich biopolymers can be converted into environmentally clean and CO2 neutral fuels. A select group of photosynthetic microorganisms have evolved the ability to extract and divert protons and electrons derived from water, to chloroplast hydrogenase(s) to produce molecular H2 fuel. Here, we describe the development and characterization of C. reinhardtii strains, derived from the high H2 production mutant Stm6, into which the HUP1 (hexose uptake protein) hexose symporter from Chlorella kessleri was introduced. The isolated cell lines can use externally supplied glucose for heterotrophic growth in the dark. More importantly, external glucose supply (1mM) was shown to increase the H2 production capacity in strain Stm6Glc4 to ~150% of that of the high-H2 producing strain, Stm6. This establishes the foundations for a new fuel production process in which H2O and glucose can simultaneously be used for H2 production. It also opens new perspectives on future strategies for improving Bio-H2 production efficiency under natural day/night regimes and for using sugar waste material for energy production in green algae as photosynthetic catalysts.
Erscheinungsjahr
Zeitschriftentitel
J. Biotechnol. 131
Band
131
Ausgabe
1
Seite(n)
27-33
ISSN
PUB-ID

Zitieren

Doebbe A, Rupprecht J, Beckmann J, et al. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131. 2007;131(1):27-33.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., & Kruse, O. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131, 131(1), 27-33. doi:10.1016/j.jbiotec.2007.05.017
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., and Kruse, O. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131 131, 27-33.
Doebbe, A., et al., 2007. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131, 131(1), p 27-33.
A. Doebbe, et al., “Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production”, J. Biotechnol. 131, vol. 131, 2007, pp. 27-33.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J.H., Hallmann, A., Hankamer, B., Kruse, O.: Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131. 131, 27-33 (2007).
Doebbe, Anja, Rupprecht, Jens, Beckmann, Julia, Mussgnug, Jan H., Hallmann, Armin, Hankamer, Ben, and Kruse, Olaf. “Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production”. J. Biotechnol. 131 131.1 (2007): 27-33.

37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Heterotrophic cultivation of microalgae for pigment production: A review.
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ., Biotechnol Adv 36(1), 2018
PMID: 28947090
Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production.
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P., Biotechnol Biofuels 11(), 2018
PMID: 29988523
Biomass from microalgae: the potential of domestication towards sustainable biofactories.
Benedetti M, Vecchi V, Barera S, Dall'Osto L., Microb Cell Fact 17(1), 2018
PMID: 30414618
Proteomic approaches in microalgae: perspectives and applications.
Anand V, Singh PK, Banerjee C, Shukla P., 3 Biotech 7(3), 2017
PMID: 28667637
Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.
Wang H, Hill RT, Zheng T, Hu X, Wang B., Crit Rev Biotechnol 36(2), 2016
PMID: 25264573
Challenges and opportunities for hydrogen production from microalgae.
Oey M, Sawyer AL, Ross IL, Hankamer B., Plant Biotechnol J 14(7), 2016
PMID: 26801871
Transgene Expression in Microalgae-From Tools to Applications.
Doron L, Segal N, Shapira M., Front Plant Sci 7(), 2016
PMID: 27148328
Engineering photosynthetic organisms for the production of biohydrogen.
Dubini A, Ghirardi ML., Photosynth Res 123(3), 2015
PMID: 24671643
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit Rev Biotechnol 35(4), 2015
PMID: 24754449
Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions.
Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D., Environ Microbiol 17(2), 2015
PMID: 24965277
Heterotrophic growth of microalgae: metabolic aspects.
Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A., World J Microbiol Biotechnol 31(1), 2015
PMID: 25388473
Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR., Plant J 82(3), 2015
PMID: 25752440
Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol Bioeng 112(10), 2015
PMID: 25855209
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Gimpel JA, Henríquez V, Mayfield SP., Front Microbiol 6(), 2015
PMID: 26696985
Production of xylitol by recombinant microalgae.
Pourmir A, Noor-Mohammadi S, Johannes TW., J Biotechnol 165(3-4), 2013
PMID: 23597921
Advances in microalgae engineering and synthetic biology applications for biofuel production.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP., Curr Opin Chem Biol 17(3), 2013
PMID: 23684717
Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O., Nat Commun 3(), 2012
PMID: 23169055
Renewable fuels from algae: an answer to debatable land based fuels.
Singh A, Nigam PS, Murphy JD., Bioresour Technol 102(1), 2011
PMID: 20615690
Heterotrophic cultures of microalgae: metabolism and potential products.
Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y., Water Res 45(1), 2011
PMID: 20970155
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.
Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK., BMC Genomics 12 Suppl 4(), 2011
PMID: 22369158
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS One 6(12), 2011
PMID: 22242116
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr Opin Biotechnol 21(3), 2010
PMID: 20399635
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Engineering algae for biohydrogen and biofuel production.
Beer LL, Boyd ES, Peters JW, Posewitz MC., Curr Opin Biotechnol 20(3), 2009
PMID: 19560336
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryot Cell 7(11), 2008
PMID: 18708561
A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution.
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ., Curr Opin Biotechnol 19(5), 2008
PMID: 18725295

27 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Protist. An engineered Streptomyces hygroscopicus aph 7“ gene mediates dominant resistance against hygromycin B
Berthold, Chlamydomonas reinhardtii. 153(), 2002
The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability.
Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix JD., EMBO J. 19(13), 2000
PMID: 10880449

AUTHOR UNKNOWN, 0
Approaches to developing biological H(2)-photoproducing organisms and processes.
Ghirardi ML, King PW, Posewitz MC, Maness PC, Fedorov A, Kim K, Cohen J, Schulten K, Seibert M., Biochem. Soc. Trans. 33(Pt 1), 2005
PMID: 15667268
Hydrogenases in green algae: do they save the algae's life and solve our energy problems?
Happe T, Hemschemeier A, Winkler M, Kaminski A., Trends Plant Sci. 7(6), 2002
PMID: 12049920

Harris, 1989
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499

AUTHOR UNKNOWN, 0
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118
Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies.
Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B., Photochem. Photobiol. Sci. 4(12), 2005
PMID: 16307108
Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate.
Munnik T, Meijer HJ, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A., Plant J. 22(2), 2000
PMID: 10792830
Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture
Polle, Int. J. Hydrogen Energy 27(), 2002
Perspectives and advances of biological H2 production in microorganisms.
Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O., Appl. Microbiol. Biotechnol. 72(3), 2006
PMID: 16896600
Cold Spring Harbor Laboratory Press third ed.
Sambrook, 2001
The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii.
Schonfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O., J. Biol. Chem. 279(48), 2004
PMID: 15448140

AUTHOR UNKNOWN, 0
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
Towbin H, Staehelin T, Gordon J., Proc. Natl. Acad. Sci. U.S.A. 76(9), 1979
PMID: 388439
The Chlorella H+/hexose cotransporter gene.
Wolf K, Tanner W, Sauer N., Curr. Genet. 19(3), 1991
PMID: 1868571
Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.
Zalacain M, Gonzalez A, Guerrero MC, Mattaliano RJ, Malpartida F, Jimenez A., Nucleic Acids Res. 14(4), 1986
PMID: 3005976
Trophic conversion of an obligate photoautotrophic organism through metabolic engineering.
Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE., Science 292(5524), 2001
PMID: 11408656

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17624461
PubMed | Europe PMC

Suchen in

Google Scholar