Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals

Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T (2008)
FEBS JOURNAL 275(6): 1118-1130.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gande, Santosh Lakshmi; Mariappan, Malaiyalam; Schmidt, Bernhard; Pringle, Thomas H.; von Figura, Kurt; Dierks, ThomasUniBi
Abstract / Bemerkung
Formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the oxidation of a specific cysteine residue to formylglycine, which is the catalytic residue required for sulfate ester hydrolysis. This post-translational modification occurs in the endoplasmic reticulum (ER), and is an essential step in the biogenesis of this enzyme family. A paralog of FGE (pFGE) also localizes to the ER. It shares many properties with FGE, but lacks formylglycine-generating activity. There is evidence that FGE and pFGE act in concert, possibly by forming complexes with sulfatases and one another. Here we show that human pFGE, but not FGE, is retained in the ER through its C-terminal tetrapeptide PGEL, a noncanonical variant of the classic KDEL ER-retention signal. Surprisingly, PGEL, although having two nonconsensus residues (PG), confers efficient ER retention when fused to a secretory protein. Inducible coexpression of pFGE at different levels in FGE-expressing cells did not significantly influence the kinetics of FGE secretion, suggesting that pFGE is not a retention factor for FGE in vivo. PGEL is accessible at the surface of the pFGE structure. It is found in 21 mammalian species with available pFGE sequences. Other species carry either canonical signals (eight mammals and 26 nonmammals) or different noncanonical variants (six mammals and six nonmammals). Among the latter, SGEL was tested and found to also confer ER retention. Although evolutionarily conserved for mammalian pFGE, the PGEL signal is found only in one further human protein entering the ER. Its consequences for KDEL receptor-mediated ER retrieval and benefit for pFGE functionality remain to be fully resolved.
Stichworte
endoplasmic reticulum; protein retention; KDEL receptor; formylglycine-generating enzyme; SUMF2
Erscheinungsjahr
2008
Zeitschriftentitel
FEBS JOURNAL
Band
275
Ausgabe
6
Seite(n)
1118-1130
ISSN
1742-464X
Page URI
https://pub.uni-bielefeld.de/record/1592488

Zitieren

Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T. Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS JOURNAL. 2008;275(6):1118-1130.
Gande, S. L., Mariappan, M., Schmidt, B., Pringle, T. H., von Figura, K., & Dierks, T. (2008). Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS JOURNAL, 275(6), 1118-1130. https://doi.org/10.1111/j.1742-4658.2008.06271.x
Gande, Santosh Lakshmi, Mariappan, Malaiyalam, Schmidt, Bernhard, Pringle, Thomas H., von Figura, Kurt, and Dierks, Thomas. 2008. “Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals”. FEBS JOURNAL 275 (6): 1118-1130.
Gande, S. L., Mariappan, M., Schmidt, B., Pringle, T. H., von Figura, K., and Dierks, T. (2008). Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS JOURNAL 275, 1118-1130.
Gande, S.L., et al., 2008. Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS JOURNAL, 275(6), p 1118-1130.
S.L. Gande, et al., “Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals”, FEBS JOURNAL, vol. 275, 2008, pp. 1118-1130.
Gande, S.L., Mariappan, M., Schmidt, B., Pringle, T.H., von Figura, K., Dierks, T.: Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS JOURNAL. 275, 1118-1130 (2008).
Gande, Santosh Lakshmi, Mariappan, Malaiyalam, Schmidt, Bernhard, Pringle, Thomas H., von Figura, Kurt, and Dierks, Thomas. “Paralog of the formylglycine-generating enzyme - retention in the endoplasmic reticulum by canonical and noncanonical signals”. FEBS JOURNAL 275.6 (2008): 1118-1130.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Bañas S, de Hart GW, Baker J, Rabuka D., J Biol Chem 290(25), 2015
PMID: 25931126
The Regulation of Steroid Action by Sulfation and Desulfation.
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA., Endocr Rev 36(5), 2015
PMID: 26213785
Downregulation of SUMF2 gene in ovalbumin-induced rat model of allergic inflammation.
Fang C, Li X, Liang H, Xue L, Liu L, Yang C, Gao G, Jiang X., Int J Clin Exp Pathol 8(10), 2015
PMID: 26722390
HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development.
Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev Genes Evol 221(3), 2011
PMID: 21706447

44 References

Daten bereitgestellt von Europe PubMed Central.

A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.
Schmidt B, Selmer T, Ingendoh A, von Figura K., Cell 82(2), 1995
PMID: 7628016
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923
Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K., J. Biol. Chem. 273(40), 1998
PMID: 9748219
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Boltes I, Czapinska H, Kahnert A, von Bulow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Uson I., Structure 9(6), 2001
PMID: 11435113
Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
Recksiek M, Selmer T, Dierks T, Schmidt B, von Figura K., J. Biol. Chem. 273(11), 1998
PMID: 9497327
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684
Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
Dierks T, Schmidt B, von Figura K., Proc. Natl. Acad. Sci. U.S.A. 94(22), 1997
PMID: 9342345
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.
Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A., Cell 113(4), 2003
PMID: 12757706
Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.
Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG., Cell 121(4), 2005
PMID: 15907468
A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG., Proc. Natl. Acad. Sci. U.S.A. 103(1), 2005
PMID: 16368756

Hopwood, 2001
Sulfatases and human disease.
Diez-Roux G, Ballabio A., Annu Rev Genomics Hum Genet 6(), 2005
PMID: 16124866
Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.
Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A., Hum. Mutat. 23(6), 2004
PMID: 15146462
Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene.
Annunziata I, Bouche V, Lombardi A, Settembre C, Ballabio A., Hum. Mutat. 28(9), 2007
PMID: 17657823
Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.
Sardiello M, Annunziata I, Roma G, Ballabio A., Hum. Mol. Genet. 14(21), 2005
PMID: 16174644
Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K., J. Biol. Chem. 280(15), 2005
PMID: 15708861
Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2.
Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A, Cosma MP., EMBO Rep. 6(7), 2005
PMID: 15962010
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
Dickmanns A, Schmidt B, Rudolph MG, Mariappan M, Dierks T, von Figura K, Ficner R., J. Biol. Chem. 280(15), 2005
PMID: 15687489
PROSITE: a documented database using patterns and profiles as motif descriptors.
Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P., Brief. Bioinformatics 3(3), 2002
PMID: 12230035
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036
Sorting of soluble ER proteins in yeast.
Pelham HR, Hardwick KG, Lewis MJ., EMBO J. 7(6), 1988
PMID: 3049074
Identification of amino acids in the binding pocket of the human KDEL receptor.
Scheel AA, Pelham HR., J. Biol. Chem. 273(4), 1998
PMID: 9442098
Sequence of a second human KDEL receptor.
Lewis MJ, Pelham HR., J. Mol. Biol. 226(4), 1992
PMID: 1325562
A single polypeptide acts both as the beta subunit of prolyl 4-hydroxylase and as a protein disulfide-isomerase.
Koivu J, Myllyla R, Helaakoski T, Pihlajaniemi T, Tasanen K, Kivirikko KI., J. Biol. Chem. 262(14), 1987
PMID: 3032969
Molecular cloning of the beta-subunit of human prolyl 4-hydroxylase. This subunit and protein disulphide isomerase are products of the same gene.
Pihlajaniemi T, Helaakoski T, Tasanen K, Myllyla R, Huhtala ML, Koivu J, Kivirikko KI., EMBO J. 6(3), 1987
PMID: 3034602
Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44.
Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, Mezghrani A, Ruffato E, Simmen T, Sitia R., EMBO J. 22(19), 2003
PMID: 14517240
A C-terminal signal prevents secretion of luminal ER proteins.
Munro S, Pelham HR., Cell 48(5), 1987
PMID: 3545499
The Hera database and its use in the characterization of endoplasmic reticulum proteins.
Scott M, Lu G, Hallett M, Thomas DY., Bioinformatics 20(6), 2004
PMID: 14751973
Annotating proteins from endoplasmic reticulum and Golgi apparatus in eukaryotic proteomes.
Wrzeszczynski KO, Rost B., Cell. Mol. Life Sci. 61(11), 2004
PMID: 15170512
The dynamic organisation of the secretory pathway.
Pelham HR., Cell Struct. Funct. 21(5), 1996
PMID: 9118249
pH-dependent binding of KDEL to its receptor in vitro.
Wilson DW, Lewis MJ, Pelham HR., J. Biol. Chem. 268(10), 1993
PMID: 8385108
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.
Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP., EMBO J. 26(10), 2007
PMID: 17446859
Characterization of brefeldin A induced vesicular structures containing cycling proteins of the intermediate compartment/cis-Golgi network.
Fullekrug J, Sonnichsen B, Schafer U, Nguyen Van P, Soling HD, Mieskes G., FEBS Lett. 404(1), 1997
PMID: 9074641
Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity.
Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W., Proc. Natl. Acad. Sci. U.S.A. 97(14), 2000
PMID: 10859354
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18266766
PubMed | Europe PMC

Suchen in

Google Scholar