article
Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations
published
yes
Lucian
Beznea
author
Nicu
Boboc
author
Michael
Röckner
author 10585
10020
department
We show that every C-0-resolvent on L-p(E, mu), where (E, beta) is a Lusin measurable space and mu is a or-finite measure on beta, has an associate sufficiently regular Markov process on a (larger) Lusin topological space containing E as a Borel subset. We give general conditions on the resolvent's generator such that the above process lives on E. We present two applications: (i) we settle a question of G. Mokobodzki on the existence of a (Lusin) topology on E having beta as Borel sigma-algebra such that a given Dirichlet form on L-2(E, mu) becomes quasi-regular; (ii) we solve stochastic differential equations on Hilbert spaces in the sense of a martingale problem.
Elsevier2008
fre
Comptes Rendus Mathematique
1631-073X
00025442100001710.1016/j.crma.2007.12.005
3465-6323-328
<div style="text-indent:-25px; padding-left:25px;padding-bottom:0px;">Beznea, Lucian, Boboc, Nicu, and Röckner, Michael. 2008. “Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations”. <em>Comptes Rendus Mathematique</em> 346 (5-6): 323-328.</div>
Beznea, L.; Boboc, N.; Röckner, M. (2008): Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations <em>Comptes Rendus Mathematique</em>,346:(5-6): 323-328.
Beznea, Lucian, Boboc, Nicu, and Röckner, Michael. “Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations”. <em>Comptes Rendus Mathematique</em> 346.5-6 (2008): 323-328.
Beznea, L., Boboc, N., & Röckner, M., 2008. Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em>, 346(5-6), p 323-328.
Beznea L, Boboc N, Röckner M (2008) <br /><em>Comptes Rendus Mathematique</em> 346(5-6): 323-328.
Beznea L, Boboc N, Röckner M. Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em>. 2008;346(5-6):323-328.
Beznea L, Boboc N, Röckner M (2008) <br />Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations.<br />Comptes Rendus Mathematique 346(5-6): 323-328.
<div style="text-indent:-25px; padding-left:25px;padding-bottom:0px;">Beznea, L., Boboc, N. & Röckner, M. (2008). Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em>, <em>346</em>(5-6), 323-328. Elsevier. doi:10.1016/j.crma.2007.12.005.</div>
Beznea, L., Boboc, N., Röckner, M.: Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. Comptes Rendus Mathematique. 346, 323-328 (2008).
L. Beznea, N. Boboc, and M. Röckner, “Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations”, <em>Comptes Rendus Mathematique</em>, vol. 346, 2008, pp. 323-328.
L. Beznea, N. Boboc, and M. Röckner, “Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations”, <em>Comptes Rendus Mathematique</em>, <strong>2008</strong>, <em>346</em>, 323-328.
Beznea, L., Boboc, N., & Röckner, M. (2008). Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em>, <em>346</em>(5-6), 323-328. doi:10.1016/j.crma.2007.12.005
<div style="text-indent:-25px; padding-left:25px;padding-bottom:0px;">Beznea, L., Boboc, N., & Röckner, M. (2008). Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em>, <em>346</em>(5-6), 323-328. doi:10.1016/j.crma.2007.12.005</div>
Beznea, L., Boboc, N., and Röckner, M. (2008). Markov processes associated with L-P-resolvents, applications to quasi-regular Dirichlet forms and stochastic differential equations. <em>Comptes Rendus Mathematique</em> 346, 323-328.
15921222010-04-28T11:50:21Z2019-07-08T13:07:23Z