The final form of Tao's inequality relating conditional expectation and conditional mutual information

Ahlswede R (2007)
ADVANCES IN MATHEMATICS OF COMMUNICATIONS 1(2): 239-242.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Recently Terence Tao approached Szemeredi's Regularity Lemma from the perspectives of Probability Theory and Information Theory instead of Graph Theory and found a stronger variant of this lemma, which involves a new parameter. To pass from an entropy formulation to an expectation formulation he found the following: Let Y, and X, X' be discrete random variables taking values in Y and X, respectively, where Y subset of [-1, 1], and with X' = f(X) for a (deterministic) function f. Then we have E(vertical bar E(Y vertical bar X') - E(Y vertical bar X)vertical bar) <= 2I(X Lambda Y vertical bar X')1/2. We show that the constant 2 can be improved to (2ln2)1/2 and that this is the best possible constant.
Stichworte
arithmetic progressions; information theoretic methods for combinators and number theory; Pinsker inequality; regularity lemma
Erscheinungsjahr
2007
Zeitschriftentitel
ADVANCES IN MATHEMATICS OF COMMUNICATIONS
Band
1
Ausgabe
2
Seite(n)
239-242
ISSN
1930-5346
Page URI
https://pub.uni-bielefeld.de/record/1592060

Zitieren

Ahlswede R. The final form of Tao's inequality relating conditional expectation and conditional mutual information. ADVANCES IN MATHEMATICS OF COMMUNICATIONS. 2007;1(2):239-242.
Ahlswede, R. (2007). The final form of Tao's inequality relating conditional expectation and conditional mutual information. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 1(2), 239-242. https://doi.org/10.3934/amc.2007.1.239
Ahlswede, Rudolf. 2007. “The final form of Tao's inequality relating conditional expectation and conditional mutual information”. ADVANCES IN MATHEMATICS OF COMMUNICATIONS 1 (2): 239-242.
Ahlswede, R. (2007). The final form of Tao's inequality relating conditional expectation and conditional mutual information. ADVANCES IN MATHEMATICS OF COMMUNICATIONS 1, 239-242.
Ahlswede, R., 2007. The final form of Tao's inequality relating conditional expectation and conditional mutual information. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 1(2), p 239-242.
R. Ahlswede, “The final form of Tao's inequality relating conditional expectation and conditional mutual information”, ADVANCES IN MATHEMATICS OF COMMUNICATIONS, vol. 1, 2007, pp. 239-242.
Ahlswede, R.: The final form of Tao's inequality relating conditional expectation and conditional mutual information. ADVANCES IN MATHEMATICS OF COMMUNICATIONS. 1, 239-242 (2007).
Ahlswede, Rudolf. “The final form of Tao's inequality relating conditional expectation and conditional mutual information”. ADVANCES IN MATHEMATICS OF COMMUNICATIONS 1.2 (2007): 239-242.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar