Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy

Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J (2008)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Eichenlaub-Ritter, UrsulaUniBi; Vogt, Edgar; Cukurcam, Suna; Sun, Fengyun; Pacchierotti, Francesca; Parry, Jim
Abstract / Bemerkung
Mouse oocytes isolated from large antral follicles were exposed to a wide range of concentrations of bisphenol A (BPA) during maturation in vitro (50 ng/ml to 10 mu g/ml BPA in medium). Exposure to high concentrations of BPA (10 mu g/ml) affected spindle formation, distribution of pericentriolar material and chromosome alignment on the spindle (termed congression failure), and caused a significant meiotic arrest. However, BPA did not increase hyperploidy at meiosis II at any tested concentration. Some but not all meiosis I arrested oocytes had MAD2-positive foci at centromeres of chromosomes in bivalents, suggesting that they had failed to pass the spindle checkpoint control. In a second set of experiments prepubertal mice were exposed sub-chronically for 7 days to low BPA by daily oral administration, followed by in vitro maturation of the denuded oocytes to metaphase II in the absence of BPA, as this treatment protocol was previously reported to induce chromosome congression failure and therefore suspected to cause aneuploidy in oocytes. The sub-chronic exposure subtly affected spindle morphology and oocyte maturation. However, as with the exposure in vitro, there was no evidence that low BPA doses increased hyperploidy at meiosis II. In conclusion, the data suggest that mouse oocytes from mice respond to BPA-induced disturbances in spindle formation by induction of meiotic arrest. This response might result from an effective checkpoint mechanism preventing the occurrence of chromosome malsegregation and aneuploidy. Low chronic BPA exposure in vivo as such does not appear to pose a risk for induction of errors in chromosome segregation at first meiosis in mouse oocytes. Additional factors besides BPA may have caused the high rate of congression failure and the temporary increase in hyperploidy in mouse metaphase II oocytes reported previously. (c) 2007 Elsevier B.V. All rights reserved.
bisphenol A; spindle; aneuploidy; checkpoint; oocyte; chromosome congression
Page URI


Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS. 2008;651(1-2):82-92.
Eichenlaub-Ritter, U., Vogt, E., Cukurcam, S., Sun, F., Pacchierotti, F., & Parry, J. (2008). Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 651(1-2), 82-92. https://doi.org/10.1016/j.mrgentox.2007.10.014
Eichenlaub-Ritter, Ursula, Vogt, Edgar, Cukurcam, Suna, Sun, Fengyun, Pacchierotti, Francesca, and Parry, Jim. 2008. “Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy”. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651 (1-2): 82-92.
Eichenlaub-Ritter, U., Vogt, E., Cukurcam, S., Sun, F., Pacchierotti, F., and Parry, J. (2008). Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651, 82-92.
Eichenlaub-Ritter, U., et al., 2008. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 651(1-2), p 82-92.
U. Eichenlaub-Ritter, et al., “Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy”, MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, vol. 651, 2008, pp. 82-92.
Eichenlaub-Ritter, U., Vogt, E., Cukurcam, S., Sun, F., Pacchierotti, F., Parry, J.: Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS. 651, 82-92 (2008).
Eichenlaub-Ritter, Ursula, Vogt, Edgar, Cukurcam, Suna, Sun, Fengyun, Pacchierotti, Francesca, and Parry, Jim. “Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy”. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651.1-2 (2008): 82-92.

53 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Long-term exposure to very low doses of bisphenol S affects female reproduction.
Nevoral J, Kolinko Y, Moravec J, Žalmanová T, Hošková K, Prokešová Š, Klein P, Ghaibour K, Hošek P, Štiavnická M, Řimnáčová H, Tonar Z, Petr J, Králíčková M., Reproduction 156(1), 2018
PMID: 29748175
Bisphenol-A exposure and gene expression in human luteinized membrana granulosa cells in vitro.
Mansur A, Israel A, Combelles CM, Adir M, Racowsky C, Hauser R, Baccarelli AA, Machtinger R., Hum Reprod 32(2), 2017
PMID: 27979917
A case-control study of bisphenol A and endometrioma among subgroup of Iranian women.
Rashidi BH, Amanlou M, Lak TB, Ghazizadeh M, Eslami B., J Res Med Sci 22(), 2017
PMID: 28400829
Bisphenol S negatively affects the meotic maturation of pig oocytes.
Žalmanová T, Hošková K, Nevoral J, Adámková K, Kott T, Šulc M, Kotíková Z, Prokešová Š, Jílek F, Králíčková M, Petr J., Sci Rep 7(1), 2017
PMID: 28352085
Which origin for polycystic ovaries syndrome: Genetic, environmental or both?
Fenichel P, Rougier C, Hieronimus S, Chevalier N., Ann Endocrinol (Paris) 78(3), 2017
PMID: 28606381
The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro.
Wang T, Han J, Duan X, Xiong B, Cui XS, Kim NH, Liu HL, Sun SC., Oncotarget 7(22), 2016
PMID: 27086915
Preimplantation Exposure to Bisphenol A and Triclosan May Lead to Implantation Failure in Humans.
Yuan M, Bai MZ, Huang XF, Zhang Y, Liu J, Hu MH, Zheng WQ, Jin F., Biomed Res Int 2015(), 2015
PMID: 26357649
Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions.
Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J., Int J Environ Res Public Health 12(9), 2015
PMID: 26371021
Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs).
Palioura E, Diamanti-Kandarakis E., Rev Endocr Metab Disord 16(4), 2015
PMID: 26825073
Environmental and developmental origins of ovarian reserve.
Richardson MC, Guo M, Fauser BC, Macklon NS., Hum Reprod Update 20(3), 2014
PMID: 24287894
Combating malaria with plant molecules: a brief update.
Negi AS, Gupta A, Hamid AA., Curr Med Chem 21(4), 2014
PMID: 24164201
Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors.
Albini A, Rosano C, Angelini G, Amaro A, Esposito AI, Maramotti S, Noonan DM, Pfeffer U., Curr Med Chem 21(9), 2014
PMID: 24304271
Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes.
Li L, Zhang T, Qin XS, Ge W, Ma HG, Sun LL, Hou ZM, Chen H, Chen P, Qin GQ, Shen W, Zhang XF., Mol Biol Rep 41(3), 2014
PMID: 24390239
Effects of endocrine disruptors in the development of the female reproductive tract.
Costa EM, Spritzer PM, Hohl A, Bachega TA., Arq Bras Endocrinol Metabol 58(2), 2014
PMID: 24830592
Bisphenol a and reproductive health: update of experimental and human evidence, 2007-2013.
Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA., Environ Health Perspect 122(8), 2014
PMID: 24896072
Should oral gavage be abandoned in toxicity testing of endocrine disruptors?
Vandenberg LN, Welshons WV, Vom Saal FS, Toutain PL, Myers JP., Environ Health 13(1), 2014
PMID: 24961440
Exposure to low-dose bisphenol A impairs meiosis in the rat seminiferous tubule culture model: a physiotoxicogenomic approach.
Ali S, Steinmetz G, Montillet G, Perrard MH, Loundou A, Durand P, Guichaoua MR, Prat O., PLoS One 9(9), 2014
PMID: 25181051
In vivo and in vitro environmental effects on mammalian oocyte quality.
Krisher RL., Annu Rev Anim Biosci 1(), 2013
PMID: 25387025
Exposure to bisphenol A results in a decline in mouse spermatogenesis.
Zhang GL, Zhang XF, Feng YM, Li L, Huynh E, Sun XF, Sun ZY, Shen W., Reprod Fertil Dev 25(6), 2013
PMID: 22951085
Bisphenol-A and human oocyte maturation in vitro.
Machtinger R, Combelles CM, Missmer SA, Correia KF, Williams P, Hauser R, Racowsky C., Hum Reprod 28(10), 2013
PMID: 23904465
The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments.
Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, Hauser R., Reprod Toxicol 42(), 2013
PMID: 24100206
Gene expression is altered after bisphenol A exposure in human fetal oocytes in vitro.
Brieño-Enríquez MA, Reig-Viader R, Cabero L, Toran N, Martínez F, Roig I, Garcia Caldés M., Mol Hum Reprod 18(4), 2012
PMID: 22121209
Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway.
Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, Sun XF, Shi QH, Shen W., Histochem Cell Biol 137(2), 2012
PMID: 22131059
Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes.
Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W., Mol Biol Rep 39(5), 2012
PMID: 22187349
Phthalates and bisphenol do not accumulate in human follicular fluid.
Krotz SP, Carson SA, Tomey C, Buster JE., J Assist Reprod Genet 29(8), 2012
PMID: 22538552
Human aneuploidy: mechanisms and new insights into an age-old problem.
Nagaoka SI, Hassold TJ, Hunt PA., Nat Rev Genet 13(7), 2012
PMID: 22705668
Oocyte developmental competence and embryo development: impact of lifestyle and environmental risk factors.
Varghese AC, Ly KD, Corbin C, Mendiola J, Agarwal A., Reprod Biomed Online 22(5), 2011
PMID: 21388885
Environmental hazard in the aetiology of somatic and germ cell aneuploidy.
Pacchierotti F, Eichenlaub-Ritter U., Cytogenet Genome Res 133(2-4), 2011
PMID: 21228560
Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors.
Nagaoka SI, Hodges CA, Albertini DF, Hunt PA., Curr Biol 21(8), 2011
PMID: 21497085
Human meiotic progression and recombination are affected by Bisphenol A exposure during in vitro human oocyte development.
Brieño-Enríquez MA, Robles P, Camats-Tarruella N, García-Cruz R, Roig I, Cabero L, Martínez F, Caldés MG., Hum Reprod 26(10), 2011
PMID: 21795248
Environmental aneugens--the need for replication.
Bell DR., Trends Genet 25(1), 2009
PMID: 18977054
Bisphenol A effects on the growing mouse oocyte are influenced by diet.
Muhlhauser A, Susiarjo M, Rubio C, Griswold J, Gorence G, Hassold T, Hunt PA., Biol Reprod 80(5), 2009
PMID: 19164168
The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction.
Hunt PA, Susiarjo M, Rubio C, Hassold TJ., Biol Reprod 81(5), 2009
PMID: 19458313
A CASCADE of effects of bisphenol A.
Bondesson M, Jönsson J, Pongratz I, Olea N, Cravedi JP, Zalko D, Håkansson H, Halldin K, Di Lorenzo D, Behl C, Manthey D, Balaguer P, Demeneix B, Fini JB, Laudet V, Gustafsson JA., Reprod Toxicol 28(4), 2009
PMID: 19577634
Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse.
Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S, Adler ID., Mutat Res 651(1-2), 2008
PMID: 18083607
Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing.
Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, Iguchi T, Juul A, McLachlan JA, Schwartz J, Skakkebaek N, Soto AM, Swan S, Walker C, Woodruff TK, Woodruff TJ, Giudice LC, Guillette LJ., Fertil Steril 90(4), 2008
PMID: 18929049

69 References

Daten bereitgestellt von Europe PubMed Central.

Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.
Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA., Endocrinology 139(10), 1998
PMID: 9751507
Differential interactions of bisphenol A and 17beta-estradiol with estrogen receptor alpha (ERalpha) and ERbeta.
Hiroi H, Tsutsumi O, Momoeda M, Takai Y, Osuga Y, Taketani Y., Endocr. J. 46(6), 1999
PMID: 10724352
Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds.
Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S., Toxicol. Sci. 84(2), 2005
PMID: 15635150
Interference with microtubules and induction of micronuclei in vitro by various bisphenols.
Pfeiffer E, Rosenberg B, Deuschel S, Metzler M., Mutat. Res. 390(1-2), 1997
PMID: 9150749
Bisphenol-A induces cellular transformation, aneuploidy and DNA adduct formation in cultured Syrian hamster embryo cells.
Tsutsui T, Tamura Y, Yagi E, Hasegawa K, Takahashi M, Maizumi N, Yamaguchi F, Barrett JC., Int. J. Cancer 75(2), 1998
PMID: 9462721
Detection and characterization of mechanisms of action of aneugenic chemicals.
Parry EM, Parry JM, Corso C, Doherty A, Haddad F, Hermine TF, Johnson G, Kayani M, Quick E, Warr T, Williamson J., Mutagenesis 17(6), 2002
PMID: 12435848
Bisphenol a exposure causes meiotic aneuploidy in the female mouse.
Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ., Curr. Biol. 13(7), 2003
PMID: 12676084
Mechanisms and risk of chemically induced aneuploidy in mammalian germ cells.
Pacchierotti F, Ranaldi R., Curr. Pharm. Des. 12(12), 2006
PMID: 16611130
Endocrine disruptors and reproductive health: the case of bisphenol-A.
Maffini MV, Rubin BS, Sonnenschein C, Soto AM., Mol. Cell. Endocrinol. 254-255(), 2006
PMID: 16781053
Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse.
Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S, Adler ID., Mutat. Res. 651(1-2), 2007
PMID: 18083607
Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity.
Metzler M, Pfeiffer E., Environ. Health Perspect. 103 Suppl 7(), 1995
PMID: 8593868
Effects of endocrine disrupting chemicals on the microtubule network in Chinese hamster V79 cells in culture and in Sertoli cells in rats.
Nakagomi M, Suzuki E, Usumi K, Saitoh Y, Yoshimura S, Nagao T, Ono H., Teratog., Carcinog. Mutagen. 21(6), 2001
PMID: 11746258
Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.
Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J., Mutat. Res. 651(1-2), 2007
PMID: 18093867
The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint.
De Antoni A, Pearson CG, Cimini D, Canman JC, Sala V, Nezi L, Mapelli M, Sironi L, Faretta M, Salmon ED, Musacchio A., Curr. Biol. 15(3), 2005
PMID: 15694304
Non-invasive method to assess genotoxicity of nocodazole interfering with spindle formation in mammalian oocytes.
Shen Y, Betzendahl I, Sun F, Tinneberg HR, Eichenlaub-Ritter U., Reprod. Toxicol. 19(4), 2005
PMID: 15749259
Model for aging: knockdown of Mad2 expression predisposes to non-disjunction in mammalian oocytes possessing aberrant spindles
Eichenlaub-Ritter, Hum. Reprod. 20(Suppl. 1), 2005
2-methoxyestradiol induces spindle aberrations, chromosome congression failure, and nondisjunction in mouse oocytes.
Eichenlaub-Ritter U, Winterscheidt U, Vogt E, Shen Y, Tinneberg HR, Sorensen R., Biol. Reprod. 76(5), 2007
PMID: 17229934
Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1.
Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A., Nat. Cell Biol. 5(11), 2003
PMID: 14593421
Resolution of chiasmata in oocytes requires separase-mediated proteolysis.
Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, Ellenberg J, de Boer P, Nasmyth K., Cell 126(1), 2006
PMID: 16839882
Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis.
Zhang D, Ma W, Li YH, Hou Y, Li SW, Meng XQ, Sun XF, Sun QY, Wang WH., Biol. Reprod. 71(3), 2004
PMID: 15115722
2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta.
LaVallee TM, Zhan XH, Herbstritt CJ, Kough EC, Green SJ, Pribluda VS., Cancer Res. 62(13), 2002
PMID: 12097276

Hogan, 1994
Chloral hydrate induced spindle aberrations, metaphase I arrest and aneuploidy in mouse oocytes.
Eichenlaub-Ritter U, Betzendahl I., Mutagenesis 10(6), 1995
PMID: 8596466
2-Methoxyestradiol, a promising anticancer agent.
Lakhani NJ, Sarkar MA, Venitz J, Figg WD., Pharmacotherapy 23(2), 2003
PMID: 12587805
An air-drying method for chromosome preparations from mouse eggs
Tarkowski, Cytogenetics 5(), 1966
Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure.
Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y., Hum. Reprod. 17(11), 2002
PMID: 12407035
Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester.
Yamada H, Furuta I, Kato EH, Kataoka S, Usuki Y, Kobashi G, Sata F, Kishi R, Fujimoto S., Reprod. Toxicol. 16(6), 2002
PMID: 12401500
Parent bisphenol A accumulation in the human maternal-fetal-placental unit.
Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I., Environ. Health Perspect. 110(11), 2002
PMID: 12417499
Exposure to bisphenol A is associated with recurrent miscarriage.
Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K., Hum. Reprod. 20(8), 2005
PMID: 15947000
[Estimation of intake level of bisphenol A in Japanese pregnant women based on measurement of urinary excretion level of the metabolite].
Fujimaki K, Arakawa C, Yoshinaga J, Watanabe C, Serizawa S, Imai H, Shiraishi H, Mizumoto Y., Nihon Eiseigaku Zasshi 59(4), 2004
PMID: 15626028
Weight of the evidence evaluation of low-dose reproductive and developmental effects of bisphenol A
Gray, Hum. Ecol. Risk Assess. 10(), 2004
Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity.
Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS., Environ. Health Perspect. 111(8), 2003
PMID: 12826473
Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite.
Masuda S, Terashima Y, Sano A, Kuruto R, Sugiyama Y, Shimoi K, Tanji K, Yoshioka H, Terao Y, Kinae N., Mutat. Res. 585(1-2), 2005
PMID: 15936980
Gender difference in serum bisphenol A levels may be caused by liver UDP-glucuronosyltransferase activity in rats.
Takeuchi T, Tsutsumi O, Nakamura N, Ikezuki Y, Takai Y, Yano T, Taketani Y., Biochem. Biophys. Res. Commun. 325(2), 2004
PMID: 15530427
Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice.
Zalko D, Soto AM, Dolo L, Dorio C, Rathahao E, Debrauwer L, Faure R, Cravedi JP., Environ. Health Perspect. 111(3), 2003
PMID: 12611660
Potent estrogenic metabolites of bisphenol A and bisphenol B formed by rat liver S9 fraction: their structures and estrogenic potency.
Yoshihara S, Mizutare T, Makishima M, Suzuki N, Fujimoto N, Igarashi K, Ohta S., Toxicol. Sci. 78(1), 2003
PMID: 14691209
Estrogen and bisphenol A disrupt spontaneous [Ca(2+)](i) oscillations in mouse oocytes.
Mohri T, Yoshida S., Biochem. Biophys. Res. Commun. 326(1), 2005
PMID: 15567167
Signaling from the membrane via membrane estrogen receptor-alpha: estrogens, xenoestrogens, and phytoestrogens.
Watson CS, Bulayeva NN, Wozniak AL, Finnerty CC., Steroids 70(5-7), 2005
PMID: 15862819
Effects of nitric oxide synthase inhibitors on porcine oocyte meiotic maturation.
Tao Y, Xie H, Hong H, Chen X, Jang J, Xia G., Zygote 13(1), 2005
PMID: 15984155
Association between spindle assembly checkpoint expression and maternal age in human oocytes.
Steuerwald N, Cohen J, Herrera RJ, Sandalinas M, Brenner CA., Mol. Hum. Reprod. 7(1), 2001
PMID: 11134360
Age-associated alteration of gene expression patterns in mouse oocytes.
Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, Dudekula DB, VanBuren V, Ko MS., Hum. Mol. Genet. 13(19), 2004
PMID: 15317747
Effects of endocrine disrupters on the oocytes and embryos of farm animals.
Brevini TA, Cillo F, Antonini S, Gandolfi F., Reprod. Domest. Anim. 40(4), 2005
PMID: 16008759
Toxicokinetics of bisphenol A in female DA/Han rats after a single i.v. and oral administration.
Upmeier A, Degen GH, Diel P, Michna H, Bolt HM., Arch. Toxicol. 74(8), 2000
PMID: 11097379
Polo-box motif targets a centrosome regulator, RanGTPase.
Jang YJ, Ji JH, Ahn JH, Hoe KL, Won M, Im DS, Chae SK, Song S, Yoo HS., Biochem. Biophys. Res. Commun. 325(1), 2004
PMID: 15522227
Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores.
Ahonen LJ, Kallio MJ, Daum JR, Bolton M, Manke IA, Yaffe MB, Stukenberg PT, Gorbsky GJ., Curr. Biol. 15(12), 2005
PMID: 15964272
Bisphenol A binds to protein disulfide isomerase and inhibits its enzymatic and hormone-binding activities.
Hiroi T, Okada K, Imaoka S, Osada M, Funae Y., Endocrinology 147(6), 2006
PMID: 16543366
Bisphenol A exposure in utero disrupts early oogenesis in the mouse.
Susiarjo M, Hassold TJ, Freeman E, Hunt PA., PLoS Genet. 3(1), 2007
PMID: 17222059

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 18096426
PubMed | Europe PMC

Suchen in

Google Scholar