Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii

Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009)
In: Journal of Biotechnology. JOURNAL OF BIOTECHNOLOGY, 142(1). ELSEVIER SCIENCE BV: 70-77.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Beckmann, JuliaUniBi; Lehr, F.; Finazzi, G.; Hankamer, B.; Posten, C.; Wobbe, LutzUniBi ; Kruse, OlafUniBi
Abstract / Bemerkung
The efficient use of microalgae to convert sun light energy into biomass is limited by losses during high light illumination of dense cell cultures in closed bioreactors. Uneven light distribution can be overcome by using cell cultures with smaller antenna sizes packed to high cell density cultures, thus allowing good light penetration into the inner sections of the reactor. We engineered a new small PSII antenna size Chlamydomonas reinhardtii strain with improved photon conversion efficiency and increased growth rates under high light conditions. We achieved this goal by transformation of a permanently active variant NAB1* of the LHC translation repressor NAB1* to reduce antenna size via translation repression. NAB1* expression was demonstrated in Stm6Glc477(T7), leading to a reduction of LHC antenna size by 10-17%. T7 showed a similar to 50% increase of photosynthetic efficiency (Phi PSII) at saturating light intensity compared to the parental strain. T7 converted light to biomass with much higher efficiencies with a similar to 50% improved mid log growth phase. Moreover, T7 cultures reached higher densities when grown in large-scale bioreactors. Thus, the phenotype of strain T7 may have important implications for biotechnological applications in which photosynthetic microalgae are used for large-scale culturing as an alternative plant biomass source. (C) 2009 Elsevier B.V. All rights reserved.
Stichworte
Reinhardtii; Bioreactor; Translation repression; Biomass; Light harvesting
Erscheinungsjahr
2009
Titel des Konferenzbandes
Journal of Biotechnology
Serien- oder Zeitschriftentitel
JOURNAL OF BIOTECHNOLOGY
Band
142
Ausgabe
1
Seite(n)
70-77
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/1591857

Zitieren

Beckmann J, Lehr F, Finazzi G, et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. In: Journal of Biotechnology. JOURNAL OF BIOTECHNOLOGY. Vol 142. ELSEVIER SCIENCE BV; 2009: 70-77.
Beckmann, J., Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, L., & Kruse, O. (2009). Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Journal of Biotechnology, JOURNAL OF BIOTECHNOLOGY, 142, 70-77. ELSEVIER SCIENCE BV. https://doi.org/10.1016/j.jbiotec.2009.02.015
Beckmann, Julia, Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, Lutz, and Kruse, Olaf. 2009. “Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii”. In Journal of Biotechnology, 142:70-77. JOURNAL OF BIOTECHNOLOGY. ELSEVIER SCIENCE BV.
Beckmann, J., Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, L., and Kruse, O. (2009). “Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii” in Journal of Biotechnology JOURNAL OF BIOTECHNOLOGY, vol. 142, (ELSEVIER SCIENCE BV), 70-77.
Beckmann, J., et al., 2009. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. In Journal of Biotechnology. JOURNAL OF BIOTECHNOLOGY. no.142 ELSEVIER SCIENCE BV, pp. 70-77.
J. Beckmann, et al., “Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii”, Journal of Biotechnology, JOURNAL OF BIOTECHNOLOGY, vol. 142, ELSEVIER SCIENCE BV, 2009, pp.70-77.
Beckmann, J., Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, L., Kruse, O.: Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. Journal of Biotechnology. JOURNAL OF BIOTECHNOLOGY. 142, p. 70-77. ELSEVIER SCIENCE BV (2009).
Beckmann, Julia, Lehr, F., Finazzi, G., Hankamer, B., Posten, C., Wobbe, Lutz, and Kruse, Olaf. “Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii”. Journal of Biotechnology. ELSEVIER SCIENCE BV, 2009.Vol. 142. JOURNAL OF BIOTECHNOLOGY. 70-77.

49 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii.
Jeong J, Baek K, Yu J, Kirst H, Betterle N, Shin W, Bae S, Melis A, Jin E., J Exp Bot 69(5), 2018
PMID: 29300952
Biomass from microalgae: the potential of domestication towards sustainable biofactories.
Benedetti M, Vecchi V, Barera S, Dall'Osto L., Microb Cell Fact 17(1), 2018
PMID: 30414618
Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
Ng IS, Tan SI, Kao PH, Chang YK, Chang JS., Biotechnol J 12(10), 2017
PMID: 28786539
Complementation of a mutation in CpSRP43 causing partial truncation of light-harvesting chlorophyll antenna in Chlorella vulgaris.
Shin WS, Lee B, Kang NK, Kim YU, Jeong WJ, Kwon JH, Jeong BR, Chang YK., Sci Rep 7(1), 2017
PMID: 29263352
Estimation of Chlamydomonas reinhardtii biomass concentration from chord length distribution data.
Lopez-Exposito P, Suarez AB, Negro C., J Appl Phycol 28(), 2016
PMID: 27471343
Challenges and opportunities for hydrogen production from microalgae.
Oey M, Sawyer AL, Ross IL, Hankamer B., Plant Biotechnol J 14(7), 2016
PMID: 26801871
Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis.
Kim JY, Kwak HS, Sung YJ, Choi HI, Hong ME, Lim HS, Lee JH, Lee SY, Sim SJ., Sci Rep 6(), 2016
PMID: 26852806
A Light Switch Based on Protein S-Nitrosylation Fine-Tunes Photosynthetic Light Harvesting in Chlamydomonas.
Berger H, De Mia M, Morisse S, Marchand CH, Lemaire SD, Wobbe L, Kruse O., Plant Physiol 171(2), 2016
PMID: 27208221
Harnessing the power of microbial autotrophy.
Claassens NJ, Sousa DZ, Dos Santos VA, de Vos WM, van der Oost J., Nat Rev Microbiol 14(11), 2016
PMID: 27665719
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit Rev Biotechnol 35(4), 2015
PMID: 24754449
Microalgae as sustainable renewable energy feedstock for biofuel production.
Medipally SR, Yusoff FM, Banerjee S, Shariff M., Biomed Res Int 2015(), 2015
PMID: 25874216
Light stress and photoprotection in Chlamydomonas reinhardtii.
Erickson E, Wakao S, Niyogi KK., Plant J 82(3), 2015
PMID: 25758978
Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis.
Wondraczek L, Tyystjärvi E, Méndez-Ramos J, Müller FA, Zhang Q., Adv Sci (Weinh) 2(12), 2015
PMID: 27774377
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Gimpel JA, Henríquez V, Mayfield SP., Front Microbiol 6(), 2015
PMID: 26696985
Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors.
Abiusi F, Sampietro G, Marturano G, Biondi N, Rodolfi L, D'Ottavio M, Tredici MR., Biotechnol Bioeng 111(5), 2014
PMID: 23904253
Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis.
Jensen PE, Leister D., Front Bioeng Biotechnol 2(), 2014
PMID: 25024050
Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor.
Cazzaniga S, Dall'Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R., Biotechnol Biofuels 7(1), 2014
PMID: 25352913
Engineering photosynthesis in plants and synthetic microorganisms.
Maurino VG, Weber AP., J Exp Bot 64(3), 2013
PMID: 23028016
Synthetic genomics and synthetic biology applications between hopes and concerns.
König H, Frank D, Heil R, Coenen C., Curr Genomics 14(1), 2013
PMID: 23997647
Synthetic biology and the technicity of biofuels.
Mackenzie A., Stud Hist Philos Biol Biomed Sci 44(2), 2013
PMID: 23591047
Spectral expansion and antenna reduction can enhance photosynthesis for energy production.
Blankenship RE, Chen M., Curr Opin Chem Biol 17(3), 2013
PMID: 23602382
Design and development of synthetic microbial platform cells for bioenergy.
Lee SJ, Lee SJ, Lee DW., Front Microbiol 4(), 2013
PMID: 23626588
Advances in microalgae engineering and synthetic biology applications for biofuel production.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP., Curr Opin Chem Biol 17(3), 2013
PMID: 23684717
Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory.
Yu Y, You L, Liu D, Hollinshead W, Tang YJ, Zhang F., Mar Drugs 11(8), 2013
PMID: 23945601
Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials.
Müller C, Kraushaar K, Doebbe A, Mussgnug JH, Kruse O, Kroke E, Patel AV., Chem Commun (Camb) 49(86), 2013
PMID: 24051654
Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels.
Work VH, D'Adamo S, Radakovits R, Jinkerson RE, Posewitz MC., Curr Opin Biotechnol 23(3), 2012
PMID: 22172528
Integrated green algal technology for bioremediation and biofuel.
Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ., Bioresour Technol 107(), 2012
PMID: 22230775
Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii.
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O., Nat Commun 3(), 2012
PMID: 23169055
Improving carbon fixation pathways.
Ducat DC, Silver PA., Curr Opin Chem Biol 16(3-4), 2012
PMID: 22647231
Exploiting diversity and synthetic biology for the production of algal biofuels.
Georgianna DR, Mayfield SP., Nature 488(7411), 2012
PMID: 22895338
Light requirements in microalgal photobioreactors: an overview of biophotonic aspects.
Carvalho AP, Silva SO, Baptista JM, Malcata FX., Appl Microbiol Biotechnol 89(5), 2011
PMID: 21181149
Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii.
Toepel J, Albaum SP, Arvidsson S, Goesmann A, la Russa M, Rogge K, Kruse O., BMC Genomics 12(), 2011
PMID: 22118351
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryot Cell 9(4), 2010
PMID: 20139239
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr Opin Biotechnol 21(3), 2010
PMID: 20399635
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Future prospects of microalgal biofuel production systems.
Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B., Trends Plant Sci 15(10), 2010
PMID: 20655798
Plant-derived vaccines and other therapeutics produced in contained systems.
Franconi R, Demurtas OC, Massa S., Expert Rev Vaccines 9(8), 2010
PMID: 20673011
Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii.
Fischer BB, Rüfenacht K, Dannenhauer K, Wiesendanger M, Eggen RI., Environ Toxicol Chem 29(10), 2010
PMID: 20872684
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19480949
PubMed | Europe PMC

Suchen in

Google Scholar