Ocular following response to sampled motion

Bostroem KJ, Warzecha A-K (2009)
VISION RESEARCH 49(13): 1693-1701.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 553.73 KB
Autor*in
Bostroem, Kim Joris; Warzecha, Anne-KathrinUniBi
Abstract / Bemerkung
We investigate the impact of monitor frame rate on the human ocular following response (OFR) and find that the response latency considerably depends on the frame rate in the range of 80-160 Hz, which is far above the flicker fusion limit. From the lowest to the highest frame rate the latency declines by roughly 10 ms. Moreover, the relationship between response latency and stimulus speed is affected by the frame rate, compensating and even inverting the effect at lower frame rates. In contrast to that, the initial response acceleration is not affected by the frame rate and its expected dependence on stimulus speed remains stable. The nature of these phenomena reveals insights into the neural mechanism of low-level motion detection underlying the ocular following response. (C) 2009 Elsevier Ltd. All rights reserved.
Stichworte
Low-level vision; Oculomotor system; Sampled motion; Ocular following; Eye movements; response
Erscheinungsjahr
2009
Zeitschriftentitel
VISION RESEARCH
Band
49
Ausgabe
13
Seite(n)
1693-1701
ISSN
0042-6989
Page URI
https://pub.uni-bielefeld.de/record/1591768

Zitieren

Bostroem KJ, Warzecha A-K. Ocular following response to sampled motion. VISION RESEARCH. 2009;49(13):1693-1701.
Bostroem, K. J., & Warzecha, A. - K. (2009). Ocular following response to sampled motion. VISION RESEARCH, 49(13), 1693-1701. https://doi.org/10.1016/j.visres.2009.04.006
Bostroem, Kim Joris, and Warzecha, Anne-Kathrin. 2009. “Ocular following response to sampled motion”. VISION RESEARCH 49 (13): 1693-1701.
Bostroem, K. J., and Warzecha, A. - K. (2009). Ocular following response to sampled motion. VISION RESEARCH 49, 1693-1701.
Bostroem, K.J., & Warzecha, A.-K., 2009. Ocular following response to sampled motion. VISION RESEARCH, 49(13), p 1693-1701.
K.J. Bostroem and A.-K. Warzecha, “Ocular following response to sampled motion”, VISION RESEARCH, vol. 49, 2009, pp. 1693-1701.
Bostroem, K.J., Warzecha, A.-K.: Ocular following response to sampled motion. VISION RESEARCH. 49, 1693-1701 (2009).
Bostroem, Kim Joris, and Warzecha, Anne-Kathrin. “Ocular following response to sampled motion”. VISION RESEARCH 49.13 (2009): 1693-1701.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:02Z
MD5 Prüfsumme
77cd990d4fd2dbfda89017e14013ee89


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

41 References

Daten bereitgestellt von Europe PubMed Central.

Spatiotemporal energy models for the perception of motion.
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Spatial and temporal selectivity of the human motion detection system.
Anderson SJ, Burr DC., Vision Res. 25(8), 1985
PMID: 4071994
Visual processing of motion
Burr, Trends in Neuroscience 9(), 1986
Seeing objects in motion
Burr, Proceedings of the Royal Society of London B 227(1247), 1986
Smooth and sampled motion.
Burr DC, Ross J, Morrone MC., Vision Res. 26(4), 1986
PMID: 3739239
Human smooth pursuit: stimulus-dependent responses.
Carl JR, Gellman RS., J. Neurophysiol. 57(5), 1987
PMID: 3585475
Initial ocular following in humans depends critically on the fourier components of the motion stimulus.
Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA., Ann. N. Y. Acad. Sci. 1039(), 2005
PMID: 15826980
Discriminating smooth from sampled motion: Chromatic and luminance stimuli
Cropper, Journal of the Optical Society of America A 11(2), 1994
Spatiotemporal interpolation and quality of apparent motion.
Fahle M, Biester A, Morrone C., J Opt Soc Am A Opt Image Sci Vis 18(11), 2001
PMID: 11688857
Short latency ocular-following responses in man.
Gellman RS, Carl JR, Miles FA., Vis. Neurosci. 5(2), 1990
PMID: 2278939
Slow eye movements.
Ilg UJ., Prog. Neurobiol. 53(3), 1997
PMID: 9364615
Role of the pretectal nucleus of the optic tract in short-latency ocular following responses in monkeys.
Inoue Y, Takemura A, Kawano K, Mustari MJ., Exp Brain Res 131(3), 2000
PMID: 10789943
Neural activity in cortical area MST of alert monkey during ocular following responses.
Kawano K, Shidara M, Watanabe Y, Yamane S., J. Neurophysiol. 71(6), 1994
PMID: 7931519
Neural activity in dorsolateral pontine nucleus of alert monkey during ocular following responses.
Kawano K, Shidara M, Yamane S., J. Neurophysiol. 67(3), 1992
PMID: 1578251

Koch, 1999
Motion detection mechanisms
Krekelberg, 2008
Determinants of the critical flicker-fusion threshold.
LANDIS C., Physiol. Rev. 34(2), 1954
PMID: 13155188
Reversed short-latency ocular following.
Masson GS, Yang DS, Miles FA., Vision Res. 42(17), 2002
PMID: 12169427
Cortical processing of visual motion
McCool, 2008
Visual stabilization of the eyes in primates.
Miles FA., Curr. Opin. Neurobiol. 7(6), 1997
PMID: 9464972
Short-latency ocular following responses of monkey. III. Plasticity.
Miles FA, Kawano K., J. Neurophysiol. 56(5), 1986
PMID: 3794774
The visual motion detectors underlying ocular following responses in monkeys.
Miura K, Matsuura K, Taki M, Tabata H, Inaba N, Kawano K, Miles FA., Vision Res. 46(6-7), 2005
PMID: 16356529
Estimating target speed from the population response in visual area MT.
Priebe NJ, Lisberger SG., J. Neurosci. 24(8), 2004
PMID: 14985431
Initial ocular following in humans: a response to first-order motion energy.
Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA., Vision Res. 45(25-26), 2005
PMID: 15894346
The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.
Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA., Vision Res. 46(6-7), 2005
PMID: 16242168
A model of neuronal responses in visual area MT.
Simoncelli EP, Heeger DJ., Vision Res. 38(5), 1998
PMID: 9604103
Flicker fusion frequency; background and applications.
SIMONSON E, BROZEK J., Physiol. Rev. 32(3), 1952
PMID: 12983227
Visually driven eye movements elicited at ultra-short latency are severely impaired by MST lesions.
Takemura A, Inoue Y, Kawano K., Ann. N. Y. Acad. Sci. 956(), 2002
PMID: 11960839
Population coding in cortical area MST.
Takemura A, Kawano K, Quaia C, Miles FA., Ann. N. Y. Acad. Sci. 956(), 2002
PMID: 11960812
Intrinsic properties of biological motion detectors prevent optomotor control system from getting unstable
Warzecha, Proceedings of the Royal Society of London B 351(), 1996
Window of visibility: A psychological theory of fidelity in time-sampled visual motion displays
Watson, Journal of the Optical Society of America A 3(), 1986

AUTHOR UNKNOWN, 0
Entrainment to video displays in primary visual cortex of macaque and humans.
Williams PE, Mechler F, Gordon J, Shapley R, Hawken MJ., J. Neurosci. 24(38), 2004
PMID: 15385611
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19366624
PubMed | Europe PMC

Suchen in

Google Scholar