Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited

Schleeger M, Wagner C, Vellekoop MJ, Lendl B, Heberle J (2009)
ANALYTICAL AND BIOANALYTICAL CHEMISTRY 394(7): 1869-1877.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Fourier-transform infrared (FT-IR) difference spectroscopy has been proven to be a significant tool in biospectroscopy. In particular, the step-scan technique monitors structural and electronic changes at time resolutions down to a few nanoseconds retaining the multiplex advantage of FT-IR. For the elucidation of the functional mechanisms of proteins, this technique is currently limited to repetitive systems undergoing a rapid photocycle. To overcome this obstacle, we developed a flow-flash experiment in a miniaturised flow channel which was integrated into a step-scan FT-IR spectroscopic setup. As a proof of principle, we studied the rebinding reaction of CO to myoglobin after photodissociation. The use of microfluidics reduced the sample consumption drastically such that a typical step-scan experiment takes only a few 10 ml of a millimolar sample solution, making this method particularly interesting for the investigation of biological samples that are only available in small quantities. Moreover, the flow cell provides the unique opportunity to assess the reaction mechanism of proteins that cycle slowly or react irreversibly. We infer that this novel approach will help in the elucidation of molecular reactions as complex as those of vectorial ion transfer in membrane proteins. The potential application to the oxygen splitting reaction of cytochrome c oxidase is discussed.
Erscheinungsjahr
Zeitschriftentitel
ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Band
394
Ausgabe
7
Seite(n)
1869-1877
ISSN
eISSN
PUB-ID

Zitieren

Schleeger M, Wagner C, Vellekoop MJ, Lendl B, Heberle J. Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. ANALYTICAL AND BIOANALYTICAL CHEMISTRY. 2009;394(7):1869-1877.
Schleeger, M., Wagner, C., Vellekoop, M. J., Lendl, B., & Heberle, J. (2009). Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 394(7), 1869-1877. doi:10.1007/s00216-009-2871-0
Schleeger, M., Wagner, C., Vellekoop, M. J., Lendl, B., and Heberle, J. (2009). Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. ANALYTICAL AND BIOANALYTICAL CHEMISTRY 394, 1869-1877.
Schleeger, M., et al., 2009. Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 394(7), p 1869-1877.
M. Schleeger, et al., “Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited”, ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 394, 2009, pp. 1869-1877.
Schleeger, M., Wagner, C., Vellekoop, M.J., Lendl, B., Heberle, J.: Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. ANALYTICAL AND BIOANALYTICAL CHEMISTRY. 394, 1869-1877 (2009).
Schleeger, Michael, Wagner, Christoph, Vellekoop, Michiel J., Lendl, Bernhard, and Heberle, Joachim. “Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited”. ANALYTICAL AND BIOANALYTICAL CHEMISTRY 394.7 (2009): 1869-1877.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J., Spectrochim Acta A Mol Biomol Spectrosc 188(), 2018
PMID: 28110813
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Mezzetti A, Leibl W., Photosynth Res 131(2), 2017
PMID: 27678250
Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins.
Han XX, Li J, Öner IH, Zhao B, Leimkühler S, Hildebrandt P, Weidinger IM., Anal Chim Acta 941(), 2016
PMID: 27692376
Protonated triplet-excited flavin resolved by step-scan FTIR spectroscopy: implications for photosensory LOV domains.
Thöing C, Pfeifer A, Kakorin S, Kottke T., Phys Chem Chem Phys 15(16), 2013
PMID: 23493824
Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
Wagner C, Buchegger W, Vellekoop M, Kraft M, Lendl B., Anal Bioanal Chem 400(8), 2011
PMID: 21369756
Triggered infrared spectroscopy for investigating metalloprotein chemistry.
Vincent KA., Philos Trans A Math Phys Eng Sci 368(1924), 2010
PMID: 20603378

29 References

Daten bereitgestellt von Europe PubMed Central.

Myoglobin: the hydrogen atom of biology and a paradigm of complexity.
Frauenfelder H, McMahon BH, Fenimore PW., Proc. Natl. Acad. Sci. U.S.A. 100(15), 2003
PMID: 12861080
Ligand binding and conformational motions in myoglobin.
Ostermann A, Waschipky R, Parak FG, Nienhaus GU., Nature 404(6774), 2000
PMID: 10724176
Watching a protein as it functions with 150-ps time-resolved x-ray crystallography.
Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN Jr, Wulff M, Anfinrud PA., Science 300(5627), 2003
PMID: 12817148

Frauenfelder H, Alberding NA, Ansari A, Braunstein D, Cowen BR, Hong MK, Iben IET, Johnson JB, Luck S, Marden MC, Mourant JR, Ormos P, Reinisch L, Scholl R, Schulte A, Shyamsunder E, Sorensen LB, Steinbach PJ, Xie AH, Young RD, Yue KT., 1990

AUTHOR UNKNOWN, 0

Plunkett SE, Chao JL, Tague TJ, Palmer RA., 1995
X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution.
Kuriyan J, Wilz S, Karplus M, Petsko GA., J. Mol. Biol. 192(1), 1986
PMID: 3820301
Kinetic pathways and barriers for ligand binding to myoglobin.
Olson JS, Phillips GN Jr., J. Biol. Chem. 271(30), 1996
PMID: 8698688
Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO.
Schmidt M, Nienhaus K, Pahl R, Krasselt A, Anderson S, Parak F, Nienhaus GU, Srajer V., Proc. Natl. Acad. Sci. U.S.A. 102(33), 2005
PMID: 16085709

Uhmann W, Becker A, Taran C, Siebert F., 1991

Zscherp C, Heberle J., 1997

Rödig C, Siebert F., 1999

Rammelsberg R, Boulas S, Chorongiewski H, Gerwert K., 1999
Reactions of cytochrome oxidase with oxygen and carbon monoxide.
GIBSON QH, GREENWOOD C., Biochem. J. 86(), 1963
PMID: 13947736
The reaction of reduced cytochrome C oxidase with oxygen.
Greenwood C, Gibson QH., J. Biol. Chem. 242(8), 1967
PMID: 4290651

Hinsmann P, Haberkorn M, Frank J, Svasek P, Harasek M, Lendl B., 2001
Towards biochemical reaction monitoring using FT-IR synchrotron radiation.
Kaun N, Kulka S, Frank J, Schade U, Vellekoop MJ, Harasek M, Lendl B., Analyst 131(4), 2006
PMID: 16568164

Heberle J, Zscherp C., 1996
Some pitfalls in curve-fitting and how to avoid them: a case in point.
Shrager RI, Hendler RW., J. Biochem. Biophys. Methods 36(2-3), 1998
PMID: 9711501
Time-resolved FT-IR spectroscopy traces signal relay within the blue-light receptor AppA.
Majerus T, Kottke T, Laan W, Hellingwerf K, Heberle J., Chemphyschem 8(12), 2007
PMID: 17623285

Dixon AJ, Glyn P, Healy MA, Hodges PM, Jenkins T, Poliakoff M, Turner JJ., 1988
Infrared analysis of ligand- and oxidation-induced conformational changes in hemoglobins and myoglobins.
Dong A, Huang P, Caughey B, Caughey WS., Arch. Biochem. Biophys. 316(2), 1995
PMID: 7864648
Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins.
Krimm S, Bandekar J., Adv. Protein Chem. 38(), 1986
PMID: 3541539

Svasek P, Svasek E, Lendl B, Vellekoop M., 2004

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19521691
PubMed | Europe PMC

Suchen in

Google Scholar