The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion

Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009)
JOURNAL OF BIOLOGICAL CHEMISTRY 284(35): 23415-23425.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H-2) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h of sulfur depletion. In addition to the previously reported accumulation of starch, large amounts of triacylglycerides were deposited in the cells. During the early 24- to 72-h time period fermentative energy metabolism lowered the pH, H-2 was produced, and amino acid levels generally increased. In the final phase from 72 to 120 h, metabolism slowed down leading to a stabilization of pH, even though some starch and most triacylglycerides remained. We conclude that H-2 production does not slow down due to depletion of energy reserves but rather due to loss of essential functions resulting from sulfur depletion or due to a build-up of the toxic fermentative products formate and ethanol.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF BIOLOGICAL CHEMISTRY
Band
284
Ausgabe
35
Seite(n)
23415-23425
ISSN
eISSN
PUB-ID

Zitieren

Matthew T, Zhou W, Rupprecht J, et al. The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY. 2009;284(35):23415-23425.
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., et al. (2009). The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(35), 23415-23425. doi:10.1074/jbc.M109.003541
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U. C., Smith, S. M., et al. (2009). The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY 284, 23415-23425.
Matthew, T., et al., 2009. The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(35), p 23415-23425.
T. Matthew, et al., “The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, 2009, pp. 23415-23425.
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S.R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U.C., Smith, S.M., Schenk, P.M.: The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY. 284, 23415-23425 (2009).
Matthew, Timmins, Zhou, Wenxu, Rupprecht, Jens, Lim, Lysha, Thomas-Hall, Skye R., Doebbe, Anja, Kruse, Olaf, Hankamer, Ben, Marx, Ute C., Smith, Steven M., and Schenk, Peer M. “The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion”. JOURNAL OF BIOLOGICAL CHEMISTRY 284.35 (2009): 23415-23425.

51 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in Chlamydomonas.
Tsai CH, Uygun S, Roston R, Shiu SH, Benning C., Plant Physiol 176(3), 2018
PMID: 29288234
Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.
Boyle NR, Sengupta N, Morgan JA., PLoS One 12(5), 2017
PMID: 28542252
Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation.
Hernández-Torres A, Zapata-Morales AL, Ochoa Alfaro AE, Soria-Guerra RE., World J Microbiol Biotechnol 32(4), 2016
PMID: 26925617
Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm.
Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B., Plant J 85(6), 2016
PMID: 26920093
Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation
Hernández-Torres A, Zapata-Morales AL, Ochoa Alfaro AE, Soria-Guerra RE., World J Microbiol Biotechnol 32(4), 2016
PMID: IND605148289
Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii.
Nagy V, Vidal-Meireles A, Tengölics R, Rákhely G, Garab G, Kovács L, Tóth SZ., Plant Cell Environ 39(7), 2016
PMID: 26714836
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit Rev Biotechnol 35(4), 2015
PMID: 24754449
Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.
Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE, Smith AG., Plant J 82(3), 2015
PMID: 25641561
Relevance of nutrient media composition for hydrogen production in Chlamydomonas.
Gonzalez-Ballester D, Jurado-Oller JL, Fernandez E., Photosynth Res 125(3), 2015
PMID: 25952745
Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol Bioeng 112(10), 2015
PMID: 25855209
Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production.
Antal TK, Krendeleva TE, Tyystjärvi E., Photosynth Res 125(3), 2015
PMID: 25986411
Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation.
Yang D, Song D, Kind T, Ma Y, Hoefkens J, Fiehn O., PLoS One 10(9), 2015
PMID: 26375463
Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii.
López García de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS., Biotechnol Biofuels 8(), 2015
PMID: 26633994
Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas.
Remacle C, Eppe G, Coosemans N, Fernandez E, Vigeolas H., J Exp Bot 65(1), 2014
PMID: 24187418
Rationales and approaches for studying metabolism in eukaryotic microalgae.
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M., Metabolites 4(2), 2014
PMID: 24957022
Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp.
Adarme-Vega TC, Thomas-Hall SR, Lim DK, Schenk PM., Mar Drugs 12(6), 2014
PMID: 24901700
Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.
Chaiboonchoe A, Dohai BS, Cai H, Nelson DR, Jijakli K, Salehi-Ashtiani K., Front Bioeng Biotechnol 2(), 2014
PMID: 25540776
New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.
Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O., Plant Biotechnol J 11(6), 2013
PMID: 23551401
Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach.
Jamers A, Blust R, De Coen W, Griffin JL, Jones OA., Biometals 26(5), 2013
PMID: 23775669
De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq.
Yang S, Guarnieri MT, Smolinski S, Ghirardi M, Pienkos PT., Biotechnol Biofuels 6(1), 2013
PMID: 23971877
Remodeling of membrane lipids in iron-starved Chlamydomonas.
Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS., J Biol Chem 288(42), 2013
PMID: 23983122
Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant.
Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS., Plant Cell 25(11), 2013
PMID: 24280389
TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J., Curr Opin Biotechnol 23(3), 2012
PMID: 22209109
Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas.
Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS., J Biol Chem 287(19), 2012
PMID: 22403401
Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii.
Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD., J Lipid Res 53(8), 2012
PMID: 22591742
Distinct mechanisms regulating gene expression coexist within the fermentative pathways in Chlamydomonas reinhardtii.
Swirsky Whitney LA, Novi G, Perata P, Loreti E., ScientificWorldJournal 2012(), 2012
PMID: 22792045
Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
Antal TK, Krendeleva TE, Rubin AB., Appl Microbiol Biotechnol 89(1), 2011
PMID: 20878321
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS One 6(12), 2011
PMID: 22242116
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryot Cell 9(4), 2010
PMID: 20139239
Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.
Terashima M, Specht M, Naumann B, Hippler M., Mol Cell Proteomics 9(7), 2010
PMID: 20190198
Photobiological production of hydrogen gas as a biofuel.
McKinlay JB, Harwood CS., Curr Opin Biotechnol 21(3), 2010
PMID: 20303737
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target
Marín-Navarro J, Esquivel MG, Moreno J., World J Microbiol Biotechnol 26(10), 2010
PMID: IND44426409

28 References

Daten bereitgestellt von Europe PubMed Central.


Boichenko V., Hoffmann P.., 1994
Phylogenetic and molecular analysis of hydrogen-producing green algae.
Timmins M, Thomas-Hall SR, Darling A, Zhang E, Hankamer B, Marx UC, Schenk PM., J. Exp. Bot. 60(6), 2009
PMID: 19342428

Gaffron H., Rubin J.., 1942
Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions.
Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M., Eur. J. Biochem. 270(13), 2003
PMID: 12823545
Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation.
Pollock SV, Pootakham W, Shibagaki N, Moseley JL, Grossman AR., Photosyn. Res. 86(3), 2005
PMID: 16307308
Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression.
Zhang Z, Shrager J, Jain M, Chang CW, Vallon O, Grossman AR., Eukaryotic Cell 3(5), 2004
PMID: 15470261
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryotic Cell 7(11), 2008
PMID: 18708561
Novel metabolism in Chlamydomonas through the lens of genomics.
Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH., Curr. Opin. Plant Biol. 10(2), 2007
PMID: 17291820
Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR., J. Biol. Chem. 282(35), 2007
PMID: 17565990
The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii.
Schonfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O., J. Biol. Chem. 279(48), 2004
PMID: 15448140

Harris E.., 1989

Ball S., Dirick L., Decq A., Martiat J., Matagne R.., 1990
Nitrate assimilation in Chlamydomonas.
Fernandez E, Galvan A., Eukaryotic Cell 7(4), 2008
PMID: 18310352
Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.
Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC., J. Biol. Chem. 284(11), 2008
PMID: 19117946

Stoop J., Williamson J., Pharr D.., 1996
Agrobacterium tumefaciens type II NADH dehydrogenase. Characterization and interactions with bacterial and thylakoid membranes.
Bernard L, Desplats C, Mus F, Cuine S, Cournac L, Peltier G., FEBS J. 273(15), 2006
PMID: 16884501
Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks.
Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T., Planta 227(2), 2007
PMID: 17885762
Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii.
Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML., Plant Cell 16(8), 2004
PMID: 15269330
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19478077
PubMed | Europe PMC

Suchen in

Google Scholar