Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons

Kurtz R, Beckers U, Hundsdoerfer B, Egelhaaf M (2009)
European Journal of Neuroscience 30(4): 567-577.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.96 MB
Autor*in
Kurtz, RafaelUniBi; Beckers, Ulrich; Hundsdoerfer, Benjamin; Egelhaaf, MartinUniBi
Abstract / Bemerkung
In many neurons, strong excitatory stimulation causes an after-hyperpolarization (AHP) at stimulus offset, which might give rise to activity-dependent adaptation. Graded-potential visual motion-sensitive neurons of the fly Calliphora vicina respond with depolarization and hyperpolarization during motion in their preferred direction and their anti-preferred direction, respectively. A prominent after-response, opposite in sign to the response during motion, is selectively expressed after stimulation with preferred-direction motion. Previous findings suggested that this AHP is generated in the motion-sensitive neurons themselves rather than in presynaptic processing layers. However, it remained unknown whether the AHP is caused by membrane depolarization itself or by another process, e.g. a signaling cascade triggered by activity of excitatory input channels. Here we showed by current injections and voltage clamp that the AHP and a corresponding current are generated directly by depolarization. To test whether the generation of an AHP is linked to depolarization via a Ca(2+)-dependent mechanism, we used photoactivation of a high-affinity Ca(2+) buffer. In accordance with previous findings the AHP was insensitive to manipulation of cytosolic Ca(2+). We propose that membrane depolarization presents a more direction-selective mechanism for the control of AHP than other potential control parameters.
Stichworte
invertebrate; calcium; voltage clamp; adaptation; vision
Erscheinungsjahr
2009
Zeitschriftentitel
European Journal of Neuroscience
Band
30
Ausgabe
4
Seite(n)
567-577
ISSN
0953-816X
eISSN
1460-9568
Page URI
https://pub.uni-bielefeld.de/record/1591048

Zitieren

Kurtz R, Beckers U, Hundsdoerfer B, Egelhaaf M. Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience. 2009;30(4):567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., & Egelhaaf, M. (2009). Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience, 30(4), 567-577. https://doi.org/10.1111/j.1460-9568.2009.06854.x
Kurtz, Rafael, Beckers, Ulrich, Hundsdoerfer, Benjamin, and Egelhaaf, Martin. 2009. “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”. European Journal of Neuroscience 30 (4): 567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., and Egelhaaf, M. (2009). Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience 30, 567-577.
Kurtz, R., et al., 2009. Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience, 30(4), p 567-577.
R. Kurtz, et al., “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”, European Journal of Neuroscience, vol. 30, 2009, pp. 567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., Egelhaaf, M.: Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience. 30, 567-577 (2009).
Kurtz, Rafael, Beckers, Ulrich, Hundsdoerfer, Benjamin, and Egelhaaf, Martin. “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”. European Journal of Neuroscience 30.4 (2009): 567-577.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:01Z
MD5 Prüfsumme
6bb36bf85f9df1c05727369b7561c4be


4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224

59 References

Daten bereitgestellt von Europe PubMed Central.

Sodium pumps adapt spike bursting to stimulus statistics.
Arganda S, Guantes R, de Polavieja GG., Nat. Neurosci. 10(11), 2007
PMID: 17906619
Mechanisms of synaptic depression triggered by metabotropic glutamate receptors.
Bellone C, Luscher C, Mameli M., Cell. Mol. Life Sci. 65(18), 2008
PMID: 18712277
For K+ channels, Na+ is the new Ca2+.
Bhattacharjee A, Kaczmarek LK., Trends Neurosci. 28(8), 2005
PMID: 15979166
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biol. Cybern. 56(), 1987
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 87(23), 1990
PMID: 2251278
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Neural networks in the cockpit of the fly
Borst, J. Comp. Physiol. [A] 188(), 2002
Local current spread in electrically compact neurons of the fly.
Borst A, Single S., Neurosci. Lett. 285(2), 2000
PMID: 10793242
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Slow synaptic inhibition mediated by metabotropic glutamate receptor activation of GIRK channels.
Dutar P, Petrozzino JJ, Vu HM, Schmidt MF, Perkel DJ., J. Neurophysiol. 84(5), 2000
PMID: 11067972
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert, J. Insect Physiol. 29(), 1983

Egelhaaf, 2006
Fly vision: neural mechanisms of motion computation.
Egelhaaf M., Curr. Biol. 18(8), 2008
PMID: 18430633
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Na+/K+-pump activity in photoreceptors of the blowfly Calliphora: a model analysis based on membrane potential measurements
Gerster, J. Comp. Physiol. [A] 180(), 1997
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly: I. The horizontal cells: structure and signals
Hausen, Biol. Cybern. 45(), 1982

Hausen, 1984

Hausen, 1989
Molecular mechanisms of memory storage in Aplysia.
Hawkins RD, Kandel ER, Bailey CH., Biol. Bull. 210(3), 2006
PMID: 16801493
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg, J. Comp. Physiol. [A] 149(), 1982
Visuomotor transformation in the fly gaze stabilization system
Huston, PLoS Biol. 6(), 2008
Properties of the sodium pump in the blowfly photoreceptor cell
Jansonius, J. Comp. Physiol. [A] 167(), 1990
Evidence for a sensitising pigment in fly photoreceptors.
Kirschfeld K, Franceschini N, Minke B., Nature 269(5627), 1977
PMID: 909585
A simple coding procedure enhances a neuron’s information capacity
Laughlin, Z. Naturforsch. 36c(), 1981
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc. R. Soc. Lond. B Biol. Sci. 228(), 1985
Energy limitation as a selective pressure on the evolution of sensory systems.
Niven JE, Laughlin SB., J. Exp. Biol. 211(Pt 11), 2008
PMID: 18490395
The motion after-effect: local and global contributions to contrast sensitivity.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 276(1662), 2009
PMID: 19324825
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala
de, Biol. Cybern. 54(), 1986
Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818164
Different mechanisms of calcium entry within different dendritic compartments.
Single S, Borst A., J. Neurophysiol. 87(3), 2002
PMID: 11877530
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala
Strausfeld, Cell Tissue Res. 240(), 1985
Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
Vahasoyrinki M, Niven JE, Hardie RC, Weckstrom M, Juusola M., J. Neurosci. 26(10), 2006
PMID: 16525044
A Drosophila KCNQ channel essential for early embryonic development.
Wen H, Weiger TM, Ferguson TS, Shahidullah M, Scott SS, Levitan IB., J. Neurosci. 25(44), 2005
PMID: 16267222
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19674090
PubMed | Europe PMC

Suchen in

Google Scholar