Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons
Kurtz R, Beckers U, Hundsdoerfer B, Egelhaaf M (2009)
European Journal of Neuroscience 30(4): 567-577.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
In many neurons, strong excitatory stimulation causes an after-hyperpolarization (AHP) at stimulus offset, which might give rise to activity-dependent adaptation. Graded-potential visual motion-sensitive neurons of the fly Calliphora vicina respond with depolarization and hyperpolarization during motion in their preferred direction and their anti-preferred direction, respectively. A prominent after-response, opposite in sign to the response during motion, is selectively expressed after stimulation with preferred-direction motion. Previous findings suggested that this AHP is generated in the motion-sensitive neurons themselves rather than in presynaptic processing layers. However, it remained unknown whether the AHP is caused by membrane depolarization itself or by another process, e.g. a signaling cascade triggered by activity of excitatory input channels. Here we showed by current injections and voltage clamp that the AHP and a corresponding current are generated directly by depolarization. To test whether the generation of an AHP is linked to depolarization via a Ca(2+)-dependent mechanism, we used photoactivation of a high-affinity Ca(2+) buffer. In accordance with previous findings the AHP was insensitive to manipulation of cytosolic Ca(2+). We propose that membrane depolarization presents a more direction-selective mechanism for the control of AHP than other potential control parameters.
Stichworte
invertebrate;
calcium;
voltage clamp;
adaptation;
vision
Erscheinungsjahr
2009
Zeitschriftentitel
European Journal of Neuroscience
Band
30
Ausgabe
4
Seite(n)
567-577
ISSN
0953-816X
eISSN
1460-9568
Page URI
https://pub.uni-bielefeld.de/record/1591048
Zitieren
Kurtz R, Beckers U, Hundsdoerfer B, Egelhaaf M. Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience. 2009;30(4):567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., & Egelhaaf, M. (2009). Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience, 30(4), 567-577. https://doi.org/10.1111/j.1460-9568.2009.06854.x
Kurtz, Rafael, Beckers, Ulrich, Hundsdoerfer, Benjamin, and Egelhaaf, Martin. 2009. “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”. European Journal of Neuroscience 30 (4): 567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., and Egelhaaf, M. (2009). Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience 30, 567-577.
Kurtz, R., et al., 2009. Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience, 30(4), p 567-577.
R. Kurtz, et al., “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”, European Journal of Neuroscience, vol. 30, 2009, pp. 567-577.
Kurtz, R., Beckers, U., Hundsdoerfer, B., Egelhaaf, M.: Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. European Journal of Neuroscience. 30, 567-577 (2009).
Kurtz, Rafael, Beckers, Ulrich, Hundsdoerfer, Benjamin, and Egelhaaf, Martin. “Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons”. European Journal of Neuroscience 30.4 (2009): 567-577.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:01Z
MD5 Prüfsumme
6bb36bf85f9df1c05727369b7561c4be
Daten bereitgestellt von European Bioinformatics Institute (EBI)
4 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons.
Rien D, Kern R, Kurtz R., Eur J Neurosci 36(8), 2012
PMID: 22775326
Rien D, Kern R, Kurtz R., Eur J Neurosci 36(8), 2012
PMID: 22775326
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow.
Liang P, Kern R, Kurtz R, Egelhaaf M., J Neurophysiol 105(4), 2011
PMID: 21307322
Liang P, Kern R, Kurtz R, Egelhaaf M., J Neurophysiol 105(4), 2011
PMID: 21307322
59 References
Daten bereitgestellt von Europe PubMed Central.
Sodium pumps adapt spike bursting to stimulus statistics.
Arganda S, Guantes R, de Polavieja GG., Nat. Neurosci. 10(11), 2007
PMID: 17906619
Arganda S, Guantes R, de Polavieja GG., Nat. Neurosci. 10(11), 2007
PMID: 17906619
Mechanisms of synaptic depression triggered by metabotropic glutamate receptors.
Bellone C, Luscher C, Mameli M., Cell. Mol. Life Sci. 65(18), 2008
PMID: 18712277
Bellone C, Luscher C, Mameli M., Cell. Mol. Life Sci. 65(18), 2008
PMID: 18712277
For K+ channels, Na+ is the new Ca2+.
Bhattacharjee A, Kaczmarek LK., Trends Neurosci. 28(8), 2005
PMID: 15979166
Bhattacharjee A, Kaczmarek LK., Trends Neurosci. 28(8), 2005
PMID: 15979166
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biol. Cybern. 56(), 1987
Borst, Biol. Cybern. 56(), 1987
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 87(23), 1990
PMID: 2251278
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 87(23), 1990
PMID: 2251278
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties.
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Neural networks in the cockpit of the fly
Borst, J. Comp. Physiol. [A] 188(), 2002
Borst, J. Comp. Physiol. [A] 188(), 2002
Local current spread in electrically compact neurons of the fly.
Borst A, Single S., Neurosci. Lett. 285(2), 2000
PMID: 10793242
Borst A, Single S., Neurosci. Lett. 285(2), 2000
PMID: 10793242
Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons.
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
Slow synaptic inhibition mediated by metabotropic glutamate receptor activation of GIRK channels.
Dutar P, Petrozzino JJ, Vu HM, Schmidt MF, Perkel DJ., J. Neurophysiol. 84(5), 2000
PMID: 11067972
Dutar P, Petrozzino JJ, Vu HM, Schmidt MF, Perkel DJ., J. Neurophysiol. 84(5), 2000
PMID: 11067972
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert, J. Insect Physiol. 29(), 1983
Eckert, J. Insect Physiol. 29(), 1983
Egelhaaf, 2006
Fly vision: neural mechanisms of motion computation.
Egelhaaf M., Curr. Biol. 18(8), 2008
PMID: 18430633
Egelhaaf M., Curr. Biol. 18(8), 2008
PMID: 18430633
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Na+/K+-pump activity in photoreceptors of the blowfly Calliphora: a model analysis based on membrane potential measurements
Gerster, J. Comp. Physiol. [A] 180(), 1997
Gerster, J. Comp. Physiol. [A] 180(), 1997
Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons.
Haag J, Borst A., J. Neurophysiol. 83(2), 2000
PMID: 10669515
Haag J, Borst A., J. Neurophysiol. 83(2), 2000
PMID: 10669515
Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly.
Haag J, Borst A., J. Neurosci. 22(8), 2002
PMID: 11943823
Haag J, Borst A., J. Neurosci. 22(8), 2002
PMID: 11943823
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron.
Haag J, Wertz A, Borst A., J. Neurosci. 27(8), 2007
PMID: 17314295
Haag J, Wertz A, Borst A., J. Neurosci. 27(8), 2007
PMID: 17314295
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly: I. The horizontal cells: structure and signals
Hausen, Biol. Cybern. 45(), 1982
Hausen, Biol. Cybern. 45(), 1982
Hausen, 1984
Hausen, 1989
Molecular mechanisms of memory storage in Aplysia.
Hawkins RD, Kandel ER, Bailey CH., Biol. Bull. 210(3), 2006
PMID: 16801493
Hawkins RD, Kandel ER, Bailey CH., Biol. Bull. 210(3), 2006
PMID: 16801493
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg, J. Comp. Physiol. [A] 149(), 1982
Hengstenberg, J. Comp. Physiol. [A] 149(), 1982
Visuomotor transformation in the fly gaze stabilization system
Huston, PLoS Biol. 6(), 2008
Huston, PLoS Biol. 6(), 2008
Conductance changes, an electrogenic pump and the hyperpolarization of leech neurones following impulses.
Jansen JK, Nicholls JG., J. Physiol. (Lond.) 229(3), 1973
PMID: 4693676
Jansen JK, Nicholls JG., J. Physiol. (Lond.) 229(3), 1973
PMID: 4693676
Properties of the sodium pump in the blowfly photoreceptor cell
Jansonius, J. Comp. Physiol. [A] 167(), 1990
Jansonius, J. Comp. Physiol. [A] 167(), 1990
Evidence for a sensitising pigment in fly photoreceptors.
Kirschfeld K, Franceschini N, Minke B., Nature 269(5627), 1977
PMID: 909585
Kirschfeld K, Franceschini N, Minke B., Nature 269(5627), 1977
PMID: 909585
Metabotropic glutamate group II receptors activate a G protein-coupled inwardly rectifying K+ current in neurones of the rat cerebellum.
Knoflach F, Kemp JA., J. Physiol. (Lond.) 509 ( Pt 2)(), 1998
PMID: 9575285
Knoflach F, Kemp JA., J. Physiol. (Lond.) 509 ( Pt 2)(), 1998
PMID: 9575285
Visual adaptation: physiology, mechanisms, and functional benefits.
Kohn A., J. Neurophysiol. 97(5), 2007
PMID: 17344377
Kohn A., J. Neurophysiol. 97(5), 2007
PMID: 17344377
Ca2+ clearance in visual motion-sensitive neurons of the fly studied in vivo by sensory stimulation and UV photolysis of caged Ca2+.
Kurtz R., J. Neurophysiol. 92(1), 2004
PMID: 15212443
Kurtz R., J. Neurophysiol. 92(1), 2004
PMID: 15212443
Direction-selective adaptation in fly visual motion-sensitive neurons is generated by an intrinsic conductance-based mechanism.
Kurtz R., Neuroscience 146(2), 2007
PMID: 17367948
Kurtz R., Neuroscience 146(2), 2007
PMID: 17367948
Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Transfer of visual motion information via graded synapses operates linearly in the natural activity range.
Kurtz R, Warzecha AK, Egelhaaf M., J. Neurosci. 21(17), 2001
PMID: 11517283
Kurtz R, Warzecha AK, Egelhaaf M., J. Neurosci. 21(17), 2001
PMID: 11517283
A simple coding procedure enhances a neuron’s information capacity
Laughlin, Z. Naturforsch. 36c(), 1981
Laughlin, Z. Naturforsch. 36c(), 1981
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc. R. Soc. Lond. B Biol. Sci. 228(), 1985
Maddess, Proc. R. Soc. Lond. B Biol. Sci. 228(), 1985
Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells.
Manookin MB, Demb JB., Neuron 50(3), 2006
PMID: 16675399
Manookin MB, Demb JB., Neuron 50(3), 2006
PMID: 16675399
Fast-scale adaptive changes of directional tuning in fly tangential cells are explained by a static nonlinearity.
Neri P., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766297
Neri P., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766297
Energy limitation as a selective pressure on the evolution of sensory systems.
Niven JE, Laughlin SB., J. Exp. Biol. 211(Pt 11), 2008
PMID: 18490395
Niven JE, Laughlin SB., J. Exp. Biol. 211(Pt 11), 2008
PMID: 18490395
The motion after-effect: local and global contributions to contrast sensitivity.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 276(1662), 2009
PMID: 19324825
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 276(1662), 2009
PMID: 19324825
Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron.
Peron S, Gabbiani F., Nat. Neurosci. 12(3), 2009
PMID: 19198607
Peron S, Gabbiani F., Nat. Neurosci. 12(3), 2009
PMID: 19198607
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala
de, Biol. Cybern. 54(), 1986
de, Biol. Cybern. 54(), 1986
Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818164
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818164
Different mechanisms of calcium entry within different dendritic compartments.
Single S, Borst A., J. Neurophysiol. 87(3), 2002
PMID: 11877530
Single S, Borst A., J. Neurophysiol. 87(3), 2002
PMID: 11877530
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213
Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala
Strausfeld, Cell Tissue Res. 240(), 1985
Strausfeld, Cell Tissue Res. 240(), 1985
Inactivation of voltage-activated Na(+) currents contributes to different adaptation properties of paired mechanosensory neurons.
Torkkeli PH, Sekizawa S, French AS., J. Neurophysiol. 85(4), 2001
PMID: 11287483
Torkkeli PH, Sekizawa S, French AS., J. Neurophysiol. 85(4), 2001
PMID: 11287483
Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
Vahasoyrinki M, Niven JE, Hardie RC, Weckstrom M, Juusola M., J. Neurosci. 26(10), 2006
PMID: 16525044
Vahasoyrinki M, Niven JE, Hardie RC, Weckstrom M, Juusola M., J. Neurosci. 26(10), 2006
PMID: 16525044
Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
Wang XJ., J. Neurophysiol. 79(3), 1998
PMID: 9497431
Wang XJ., J. Neurophysiol. 79(3), 1998
PMID: 9497431
Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly.
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
A Drosophila KCNQ channel essential for early embryonic development.
Wen H, Weiger TM, Ferguson TS, Shahidullah M, Scott SS, Levitan IB., J. Neurosci. 25(44), 2005
PMID: 16267222
Wen H, Weiger TM, Ferguson TS, Shahidullah M, Scott SS, Levitan IB., J. Neurosci. 25(44), 2005
PMID: 16267222
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 19674090
PubMed | Europe PMC
Suchen in