Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth

Liu P, Li R-L, Zhang L, Wang Q-L, Niehaus K, Baluska F, Samaj J, Lin J-X (2009)
Plant Journal 60(2): 303-313.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Liu, Peng; Li, Rui-Li; Zhang, Liang; Wang, Qin-Li; Niehaus, KarstenUniBi; Baluska, Frantisek; Samaj, Jozef; Lin, Jin-Xing
Abstract / Bemerkung
The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca2+ gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.
Stichworte
di-4-ANEPPDHQ; pollen tube; oxygen species; reactive; NADPH oxidase; lipid microdomains
Erscheinungsjahr
2009
Zeitschriftentitel
Plant Journal
Band
60
Ausgabe
2
Seite(n)
303-313
ISSN
0960-7412
eISSN
1365-313X
Page URI
https://pub.uni-bielefeld.de/record/1590302

Zitieren

Liu P, Li R-L, Zhang L, et al. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal. 2009;60(2):303-313.
Liu, P., Li, R. - L., Zhang, L., Wang, Q. - L., Niehaus, K., Baluska, F., Samaj, J., et al. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal, 60(2), 303-313. https://doi.org/10.1111/j.1365-313X.2009.03955.x
Liu, Peng, Li, Rui-Li, Zhang, Liang, Wang, Qin-Li, Niehaus, Karsten, Baluska, Frantisek, Samaj, Jozef, and Lin, Jin-Xing. 2009. “Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth”. Plant Journal 60 (2): 303-313.
Liu, P., Li, R. - L., Zhang, L., Wang, Q. - L., Niehaus, K., Baluska, F., Samaj, J., and Lin, J. - X. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal 60, 303-313.
Liu, P., et al., 2009. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal, 60(2), p 303-313.
P. Liu, et al., “Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth”, Plant Journal, vol. 60, 2009, pp. 303-313.
Liu, P., Li, R.-L., Zhang, L., Wang, Q.-L., Niehaus, K., Baluska, F., Samaj, J., Lin, J.-X.: Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal. 60, 303-313 (2009).
Liu, Peng, Li, Rui-Li, Zhang, Liang, Wang, Qin-Li, Niehaus, Karsten, Baluska, Frantisek, Samaj, Jozef, and Lin, Jin-Xing. “Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth”. Plant Journal 60.2 (2009): 303-313.

63 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of reactive oxygen species in pollen germination in Picea pungens (blue spruce).
Maksimov N, Evmenyeva A, Breygina M, Yermakov I., Plant Reprod 31(4), 2018
PMID: 29619606
Spatio-temporal Aspects of Ca2+ Signalling: Lessons from Guard Cells and Pollen Tubes.
Konrad KR, Maierhofer T, Hedrich R., J Exp Bot (), 2018
PMID: 29701811
Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.
Grosjean K, Der C, Robert F, Thomas D, Mongrand S, Simon-Plas F, Gerbeau-Pissot P., J Exp Bot 69(15), 2018
PMID: 29722895
Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2.
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O., Front Plant Sci 9(), 2018
PMID: 30050548
Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes.
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA., Plant Physiol 173(1), 2017
PMID: 27895207
The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis.
Yu M, Liu H, Dong Z, Xiao J, Su B, Fan L, Komis G, Šamaj J, Lin J, Li R., J Plant Physiol 215(), 2017
PMID: 28582732
Spectral phasor analysis reveals altered membrane order and function of root hair cells in Arabidopsis dry2/sqe1-5 drought hypersensitive mutant.
Sena F, Sotelo-Silveira M, Astrada S, Botella MA, Malacrida L, Borsani O., Plant Physiol Biochem 119(), 2017
PMID: 28910707
Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.
Chang YL, Li WY, Miao H, Yang SQ, Li R, Wang X, Li WQ, Chen KM., Genome Biol Evol 8(3), 2016
PMID: 26907500
Reactive oxygen species in development and infection processes.
Marschall R, Tudzynski P., Semin Cell Dev Biol 57(), 2016
PMID: 27039026
NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues.
Jiménez-Quesada MJ, Traverso JÁ, Alché Jde D., Front Plant Sci 7(), 2016
PMID: 27066025
The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought‐stress response in rice
Wang X, Zhang M, Wang Y, Gao Y, Li R, Wang G, Li W, Liu W, Chen K., Physiol Plant 156(4), 2016
PMID: IND605159798
Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice.
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, Shimamoto K., Plant Cell 28(8), 2016
PMID: 27465023
Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols.
Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P., J Biol Chem 290(9), 2015
PMID: 25575593
Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues.
Onelli E, Idilli AI, Moscatelli A., Front Plant Sci 6(), 2015
PMID: 25713579
Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.).
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P., Biol Open 4(3), 2015
PMID: 25701665
The song of lipids and proteins: dynamic lipid-protein interfaces in the regulation of plant cell polarity at different scales.
Sekereš J, Pleskot R, Pejchar P, Žárský V, Potocký M., J Exp Bot 66(6), 2015
PMID: 25716697
Spatiotemporal Dynamics of the BRI1 Receptor and its Regulation by Membrane Microdomains in Living Arabidopsis Cells.
Wang L, Li H, Lv X, Chen T, Li R, Xue Y, Jiang J, Jin B, Baluška F, Šamaj J, Wang X, Lin J., Mol Plant 8(9), 2015
PMID: 25896454
Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress.
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M., Plant Physiol 169(2), 2015
PMID: 26297139
Mapping of Membrane Lipid Order in Root Apex Zones of Arabidopsis thaliana.
Zhao X, Zhang X, Qu Y, Li R, Baluška F, Wan Y., Front Plant Sci 6(), 2015
PMID: 26734047
Modification of plasma membrane organization in tobacco cells elicited by cryptogein.
Gerbeau-Pissot P, Der C, Thomas D, Anca IA, Grosjean K, Roche Y, Perrier-Cornet JM, Mongrand S, Simon-Plas F., Plant Physiol 164(1), 2014
PMID: 24235133
Sterol-dependent induction of plant defense responses by a microbe-associated molecular pattern from Trichoderma viride.
Sharfman M, Bar M, Schuster S, Leibman M, Avni A., Plant Physiol 164(2), 2014
PMID: 24351686
Actin polymerization drives polar growth in Arabidopsis root hair cells.
Vazquez LA, Sanchez R, Hernandez-Barrera A, Zepeda-Jazo I, Sánchez F, Quinto C, Torres LC., Plant Signal Behav 9(8), 2014
PMID: 25763621
Versatile roles of plant NADPH oxidases and emerging concepts.
Kaur G, Sharma A, Guruprasad K, Pati PK., Biotechnol Adv 32(3), 2014
PMID: 24561450
Annexin-Mediated Calcium Signalling in Plants.
Davies JM., Plants (Basel) 3(1), 2014
PMID: 27135495
Lipid domain-dependent regulation of single-cell wound repair.
Vaughan EM, You JS, Elsie Yu HY, Lasek A, Vitale N, Hornberger TA, Bement WM., Mol Biol Cell 25(12), 2014
PMID: 24790096
Actin polymerization drives polar growth in Arabidopsis root hair cells.
Vazquez LA, Sanchez R, Hernandez-Barrera A, Zepeda-Jazo I, Sánchez F, Quinto C, Torres LC., Plant Signal Behav 9(), 2014
PMID: 24892301
Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein.
Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K., J Exp Bot 65(17), 2014
PMID: 24987013
Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis.
Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV., Plant Cell 26(8), 2014
PMID: 25122154
High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function.
Frescatada-Rosa M, Stanislas T, Backues SK, Reichardt I, Men S, Boutté Y, Jürgens G, Moritz T, Bednarek SY, Grebe M., Plant J 80(5), 2014
PMID: 25234576
Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view.
Nathalie Leborgne-Castel, Bouhidel K., Front Plant Sci 5(), 2014
PMID: 25566303
Calcium - a central regulator of pollen germination and tube growth.
Steinhorst L, Kudla J., Biochim Biophys Acta 1833(7), 2013
PMID: 23072967
Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.
Malinsky J, Opekarová M, Grossmann G, Tanner W., Annu Rev Plant Biol 64(), 2013
PMID: 23638827
Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life.
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J., Biol Direct 8(), 2013
PMID: 23557484
Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions.
Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM., Int J Mol Sci 14(5), 2013
PMID: 23629674
Calcium and reactive oxygen species rule the waves of signaling.
Steinhorst L, Kudla J., Plant Physiol 163(2), 2013
PMID: 23898042
Cell polarity signaling.
Bloch D, Yalovsky S., Curr Opin Plant Biol 16(6), 2013
PMID: 24238831
ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases.
Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U., PLoS Biol 11(11), 2013
PMID: 24302886
Reactive oxygen species are involved in pollen tube initiation in kiwifruit.
Speranza A, Crinelli R, Scoccianti V, Geitmann A., Plant Biol (Stuttg) 14(1), 2012
PMID: 21973108
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors.
Choi WG, Swanson SJ, Gilroy S., Plant J 70(1), 2012
PMID: 22449047
Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca²+- and K+-permeable conductance in root cells.
Laohavisit A, Shang Z, Rubio L, Cuin TA, Véry AA, Wang A, Mortimer JC, Macpherson N, Coxon KM, Battey NH, Brownlee C, Park OK, Sentenac H, Shabala S, Webb AA, Davies JM., Plant Cell 24(4), 2012
PMID: 22523205
Cell wall constrains lateral diffusion of plant plasma-membrane proteins.
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SE, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J., Proc Natl Acad Sci U S A 109(31), 2012
PMID: 22689944
On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes.
Colaço R, Moreno N, Feijó JA., J Microsc 247(1), 2012
PMID: 22681536
A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning.
Marino D, Andrio E, Danchin EG, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N., New Phytol 189(2), 2011
PMID: 21155825
In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants.
Swanson SJ, Choi WG, Chanoca A, Gilroy S., Annu Rev Plant Biol 62(), 2011
PMID: 21370977
Recognition of lipid-protein rafts in vacuolar membrane.
Ozolina NV, Nesterkina IS, Nurminsky VN, Stepanov AV, Kolesnikova EV, Gurina VV, Salyaev RK., Dokl Biochem Biophys 438(), 2011
PMID: 21725887
Rapid tip growth: insights from pollen tubes.
Qin Y, Yang Z., Semin Cell Dev Biol 22(8), 2011
PMID: 21729760
Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues.
Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C, Vázquez-Vázquez C, González de la Vara LE, Gavilanes-Ruíz M., Anal Biochem 417(2), 2011
PMID: 21723848
Calcium efflux systems in stress signaling and adaptation in plants.
Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S., Front Plant Sci 2(), 2011
PMID: 22639615
At the poles across kingdoms: phosphoinositides and polar tip growth.
Ischebeck T, Seiler S, Heilmann I., Protoplasma 240(1-4), 2010
PMID: 20091065
Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells.
Bonneau L, Gerbeau-Pissot P, Thomas D, Der C, Lherminier J, Bourque S, Roche Y, Simon-Plas F., Biochim Biophys Acta 1798(11), 2010
PMID: 20674542
Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana.
Ovecka M, Berson T, Beck M, Derksen J, Samaj J, Baluska F, Lichtscheidl IK., Plant Cell 22(9), 2010
PMID: 20841426
Membrane rafts in plant cells.
Mongrand S, Stanislas T, Bayer EM, Lherminier J, Simon-Plas F., Trends Plant Sci 15(12), 2010
PMID: 20934367

48 References

Daten bereitgestellt von Europe PubMed Central.

Cell surface polarization during yeast mating.
Bagnat M, Simons K., Proc. Natl. Acad. Sci. U.S.A. 99(22), 2002
PMID: 12374868
Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast.
Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K., Proc. Natl. Acad. Sci. U.S.A. 97(7), 2000
PMID: 10716729
Lipid rafts in plants.
Bhat RA, Panstruga R., Planta 223(1), 2005
PMID: 16136329
Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain.
Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15703292
Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts.
Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P., Plant Physiol. 137(1), 2004
PMID: 15618420
NAD(P)H oscillates in pollen tubes and is correlated with tip growth.
Cardenas L, McKenna ST, Kunkel JG, Hepler PK., Plant Physiol. 142(4), 2006
PMID: 17041030
A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells.
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L., Nature 438(7070), 2005
PMID: 16355224
Spatiotemporal patterning of reactive oxygen production and Ca(2+) wave propagation in fucus rhizoid cells.
Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C., Plant Cell 14(10), 2002
PMID: 12368492
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.
Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L., Nature 422(6930), 2003
PMID: 12660786
Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W., Proc. Natl. Acad. Sci. U.S.A. 100(26), 2003
PMID: 14673117
Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes.
Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B., Curr. Biol. 13(16), 2003
PMID: 12932321
A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes.
Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z., J. Cell Biol. 169(1), 2005
PMID: 15824136
Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels
Henzler, J. Exp. Biol. 51(), 2000
Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes.
Hwang JU, Gu Y, Lee YJ, Yang Z., Mol. Biol. Cell 16(11), 2005
PMID: 16148045
Roles of lipid rafts in membrane transport.
Ikonen E., Curr. Opin. Cell Biol. 13(4), 2001
PMID: 11454454
Characterization and application of a new optical probe for membrane lipid domains.
Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM., Biophys. J. 90(7), 2006
PMID: 16415047
The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth.
Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS., Plant Cell 14(4), 2002
PMID: 11971133
From rafts to crafts: membrane asymmetry in moving cells
Manes, Trends Immunol. 24(), 2003
Lipid raft polarization contributes to hyphal growth in Candida albicans.
Martin SW, Konopka JB., Eukaryotic Cell 3(3), 2004
PMID: 15189988
Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes.
Messerli MA, Danuser G, Robinson KR., J. Cell. Sci. 112 ( Pt 10)(), 1999
PMID: 10212144
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane.
Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ., J. Biol. Chem. 279(35), 2004
PMID: 15190066
Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells.
Owen DM, Lanigan PM, Dunsby C, Munro I, Grant D, Neil MA, French PM, Magee AI., Biophys. J. 90(11), 2006
PMID: 16617080
Optical techniques for imaging membrane lipid microdomains in living cells.
Owen DM, Neil MA, French PM, Magee AI., Semin. Cell Dev. Biol. 18(5), 2007
PMID: 17728161
Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39.
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S., J. Biol. Chem. 280(28), 2005
PMID: 15890655
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI., Nature 406(6797), 2000
PMID: 10963598
Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth.
Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V., New Phytol. 174(4), 2007
PMID: 17504458
Integrins regulate Rac targeting by internalization of membrane domains.
del Pozo MA, Alderson NB, Kiosses WB, Chiang HH, Anderson RG, Schwartz MA., Science 303(5659), 2004
PMID: 14764880
New signalling molecules regulating root hair tip growth.
Samaj J, Baluska F, Menzel D., Trends Plant Sci. 9(5), 2004
PMID: 15130546
Lipid rafts and signal transduction.
Simons K, Toomre D., Nat. Rev. Mol. Cell Biol. 1(1), 2000
PMID: 11413487
Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase.
Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S., Mol. Cell. Biol. 27(6), 2007
PMID: 17242203
Integrin-like proteins in the pollen tube: detection, localization and function.
Sun Y, Qian H, Xu XD, Han Y, Yen LF, Sun DY., Plant Cell Physiol. 41(10), 2000
PMID: 11148272
Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast.
Takeda T, Kawate T, Chang F., Nat. Cell Biol. 6(11), 2004
PMID: 15517003
Local positive feedback regulation determines cell shape in root hair cells.
Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L., Science 319(5867), 2008
PMID: 18309082
Unraveling the tapestry of networks involving reactive oxygen species in plants.
Van Breusegem F, Bailey-Serres J, Mittler R., Plant Physiol. 147(3), 2008
PMID: 18612075
Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs
Very, Proc. Natl Acad. Sci. USA (), 2000
Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe.
Wachtler V, Rajagopalan S, Balasubramanian MK., J. Cell. Sci. 116(Pt 5), 2003
PMID: 12571284
Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function.
Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B., Plant Cell 15(3), 2003
PMID: 12615936
Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.
Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K., Plant Cell 19(12), 2007
PMID: 18156215
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19566595
PubMed | Europe PMC

Suchen in

Google Scholar