Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins

Radu I, Schleeger M, Bolwien C, Heberle J (2009)
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8(11): 1517-1528.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Radu, Ionela; Schleeger, Michael; Bolwien, Carsten; Heberle, Joachim
Abstract / Bemerkung
The introduction of time-resolved Fourier transform infrared (FT-IR) spectroscopy to biochemistry opened the possibility of monitoring the catalytic mechanism of proteins along their reaction pathways. The infrared approach is very fruitful, particularly in the application to membrane proteins where NMR and X-ray crystallography are challenged by the size and protein hydrophobicity, as well as by their limited time-resolution. Here, we summarize the principles and experimental realizations of time-resolved FT-IR spectroscopy developed in our group and compare with aspects emerging from other laboratories. Examples of applications to retinal proteins and energy transduction complexes are reviewed, which emphasize the impact of time-resolved FT-IR spectroscopy on the understanding of protein reactions on the level of single bonds.
Erscheinungsjahr
2009
Zeitschriftentitel
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
Band
8
Ausgabe
11
Seite(n)
1517-1528
ISSN
1474-905X
eISSN
1474-9092
Page URI
https://pub.uni-bielefeld.de/record/1589780

Zitieren

Radu I, Schleeger M, Bolwien C, Heberle J. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 2009;8(11):1517-1528.
Radu, I., Schleeger, M., Bolwien, C., & Heberle, J. (2009). Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 8(11), 1517-1528. https://doi.org/10.1039/b9pp00050j
Radu, Ionela, Schleeger, Michael, Bolwien, Carsten, and Heberle, Joachim. 2009. “Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins”. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8 (11): 1517-1528.
Radu, I., Schleeger, M., Bolwien, C., and Heberle, J. (2009). Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8, 1517-1528.
Radu, I., et al., 2009. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 8(11), p 1517-1528.
I. Radu, et al., “Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins”, PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, vol. 8, 2009, pp. 1517-1528.
Radu, I., Schleeger, M., Bolwien, C., Heberle, J.: Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 8, 1517-1528 (2009).
Radu, Ionela, Schleeger, Michael, Bolwien, Carsten, and Heberle, Joachim. “Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins”. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8.11 (2009): 1517-1528.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J., Spectrochim Acta A Mol Biomol Spectrosc 188(), 2018
PMID: 28110813
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Mezzetti A, Leibl W., Photosynth Res 131(2), 2017
PMID: 27678250
New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution.
Süss B, Ringleb F, Heberle J., Rev Sci Instrum 87(6), 2016
PMID: 27370432
Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
Inaguma A, Tsukamoto H, Kato HE, Kimura T, Ishizuka T, Oishi S, Yawo H, Nureki O, Furutani Y., J Biol Chem 290(18), 2015
PMID: 25796616
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J., Biophys J 109(2), 2015
PMID: 26200864
Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy.
Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H., Biophys Physicobiol 12(), 2015
PMID: 27493853
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.
Lórenz-Fonfría VA, Bamann C, Resler T, Schlesinger R, Bamberg E, Heberle J., Proc Natl Acad Sci U S A 112(43), 2015
PMID: 26460012
Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations.
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C., Phys Chem Chem Phys 15(26), 2013
PMID: 23733145
Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
Ataka K, Stripp ST, Heberle J., Biochim Biophys Acta 1828(10), 2013
PMID: 23816441
Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system.
Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S., J Biol Chem 288(42), 2013
PMID: 23996000
The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J., Photochem Photobiol Sci 9(2), 2010
PMID: 20126794
Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53.
Radu I, Budyak IL, Hoomann T, Kim YJ, Engelhard M, Labahn J, Büldt G, Heberle J, Schlesinger R., Biophys Chem 150(1-3), 2010
PMID: 20303644
Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems.
Ataka K, Kottke T, Heberle J., Angew Chem Int Ed Engl 49(32), 2010
PMID: 20818765

89 References

Daten bereitgestellt von Europe PubMed Central.


Manning, Rev. Sci. Instrum. 62(), 1991

Uhmann, Appl. Spectrosc. 45(), 1991

Chen, Appl. Spectrosc. 51(), 1997

Rammelsberg, Appl. Spectrosc. 51(), 1997
Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy.
Nyquist RM, Heitbrink D, Bolwien C, Wells TA, Gennis RB, Heberle J., FEBS Lett. 505(1), 2001
PMID: 11557043

Heberle, Appl. Spectrosc. 50(), 1996

Osawa, J. Electron Spectrosc. Relat. Phenom. 64–65(), 1993
Surface-enhanced infrared spectroscopy.
Aroca RF, Ross DJ, Domingo C., Appl Spectrosc 58(11), 2004
PMID: 15606928
Crystallisation of membrane proteins mediated by antibody fragments.
Hunte C, Michel H., Curr. Opin. Struct. Biol. 12(4), 2002
PMID: 12163074
Crystallization of membrane proteins.
Ostermeier C, Michel H., Curr. Opin. Struct. Biol. 7(5), 1997
PMID: 9345629
Crystallization of membrane proteins in cubo.
Nollert P, Navarro J, Landau EM., Meth. Enzymol. 343(), 2002
PMID: 11665567
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Lozier RH, Bogomolni RA, Stoeckenius W., Biophys. J. 15(9), 1975
PMID: 1182271
Spectrally silent transitions in the bacteriorhodopsin photocycle.
Chizhov I, Chernavskii DS, Engelhard M, Mueller KH, Zubov BV, Hess B., Biophys. J. 71(5), 1996
PMID: 8913574

Weidlich, Appl. Spectrosc. 47(), 1993

Hage, J. Phys. Chem. 100(), 1996
Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle.
Sasaki J, Yuzawa T, Kandori H, Maeda A, Hamaguchi H., Biophys. J. 68(5), 1995
PMID: 7612850

Dioumaev, J. Phys. Chem. B 101(), 1997

Zscherp, J. Phys. Chem. B 101(), 1997

Maeda, Isr. J. Chem. 35(), 1995
Bacteriorhodopsin: the functional details of a molecular machine are being resolved
Heberle J, Fitter J, Sass HJ, Buldt G., Biophys. Chem. 85(2-3), 2000
PMID: 10961509

Heberle, Biochim. Biophys. Acta, Bioenerg. 1458(), 2000

Dioumaev, Biochemistry (Moscow) 66(), 2001
Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network.
Rammelsberg R, Huhn G, Lubben M, Gerwert K., Biochemistry 37(14), 1998
PMID: 9538019
A local area network of protonated water molecules.
Heberle J., Biophys. J. 87(4), 2004
PMID: 15315946
Structures and spectral signatures of protonated water networks in bacteriorhodopsin.
Mathias G, Marx D., Proc. Natl. Acad. Sci. U.S.A. 104(17), 2007
PMID: 17438299

Breton, Photosynth. Res. 55(), 1998
D38 is an essential part of the proton translocation pathway in bacteriorhodopsin.
Riesle J, Oesterhelt D, Dencher NA, Heberle J., Biochemistry 35(21), 1996
PMID: 8639612
Structure of bacteriorhodopsin at 1.55 A resolution.
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK., J. Mol. Biol. 291(4), 1999
PMID: 10452895
Assessing the functionality of a membrane protein in a three-dimensional crystal.
Heberle J, Buldt G, Koglin E, Rosenbusch JP, Landau EM., J. Mol. Biol. 281(4), 1998
PMID: 9710532
Proton transport by halorhodopsin.
Varo G, Brown LS, Needleman R, Lanyi JK., Biochemistry 35(21), 1996
PMID: 8639608
Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy.
Gerscher S, Mylrajan M, Hildebrandt P, Baron MH, Muller R, Engelhard M., Biochemistry 36(36), 1997
PMID: 9283093
Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis.
Kalaidzidis IV, Kalaidzidis YL, Kaulen AD., FEBS Lett. 427(1), 1998
PMID: 9613600
Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution.
Kolbe M, Besir H, Essen LO, Oesterhelt D., Science 288(5470), 2000
PMID: 10827943
Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle.
Dioumaev AK, Braiman MS., Photochem. Photobiol. 66(6), 1997
PMID: 9421962
Halide dependence of the halorhodopsin photocycle as measured by time-resolved infrared spectra.
Hutson MS, Shilov SV, Krebs R, Braiman MS., Biophys. J. 80(3), 2001
PMID: 11222305
X-ray structure of sensory rhodopsin II at 2.1-A resolution.
Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E, Navarro J., Proc. Natl. Acad. Sci. U.S.A. 98(18), 2001
PMID: 11504917
Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction.
Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL., Science 293(5534), 2001
PMID: 11452084
Retinylidene proteins: structures and functions from archaea to humans.
Spudich JL, Yang CS, Jung KH, Spudich EN., Annu. Rev. Cell Dev. Biol. 16(), 2000
PMID: 11031241
Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
Klare JP, Chizhov I, Engelhard M., Results Probl Cell Differ 45(), 2008
PMID: 17898961
Proteorhodopsin is a light-driven proton pump with variable vectoriality.
Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E., J. Mol. Biol. 321(5), 2002
PMID: 12206764
Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer.
Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G., Science 276(5313), 1997
PMID: 9115209
Time-resolved infrared spectroscopy of electron transfer in bacterial photosynthetic reaction centers: dynamics of binding and interaction upon QA and QB reduction.
Hienerwadel R, Thibodeau D, Lenz F, Nabedryk E, Breton J, Kreutz W, Mantele W., Biochemistry 31(25), 1992
PMID: 1610825
Protonation of Glu L212 following QB- formation in the photosynthetic reaction center of Rhodobacter sphaeroides: evidence from time-resolved infrared spectroscopy.
Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mantele W., Biochemistry 34(9), 1995
PMID: 7893696

Burie, Appl. Spectrosc. 47(), 1993
Coupling of light-induced electron transfer to proton uptake in photosynthesis.
Remy A, Gerwert K., Nat. Struct. Biol. 10(8), 2003
PMID: 12872158
Proton uptake in the reaction center mutant L210DN from Rhodobacter sphaeroides via protonated water molecules.
Hermes S, Stachnik JM, Onidas D, Remy A, Hofmann E, Gerwert K., Biochemistry 45(46), 2006
PMID: 17105193
The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A.
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S., Science 272(5265), 1996
PMID: 8638158
Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans.
Iwata S, Ostermeier C, Ludwig B, Michel H., Nature 376(6542), 1995
PMID: 7651515
The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides.
Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S., J. Mol. Biol. 321(2), 2002
PMID: 12144789
The proton donor for O-O bond scission by cytochrome c oxidase.
Gorbikova EA, Belevich I, Wikstrom M, Verkhovsky MI., Proc. Natl. Acad. Sci. U.S.A. 105(31), 2008
PMID: 18664577
Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase.
Nyquist RM, Heitbrink D, Bolwien C, Gennis RB, Heberle J., Proc. Natl. Acad. Sci. U.S.A. 100(15), 2003
PMID: 12851460

Dyer, J. Am. Chem. Soc. 111(), 1989
Photodissociation and recombination of carbonmonoxy cytochrome oxidase: dynamics from picoseconds to kiloseconds.
Einarsdottir O, Dyer RB, Lemon DD, Killough PM, Hubig SM, Atherton SJ, Lopez-Garriga JJ, Palmer G, Woodruff WH., Biochemistry 32(45), 1993
PMID: 8218278
Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus.
Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME., EMBO J. 19(8), 2000
PMID: 10775261
Internal electron transfer in cytochrome c oxidase from Rhodobacter sphaeroides.
Adelroth P, Brzezinski P, Malmstrom BG., Biochemistry 34(9), 1995
PMID: 7893697

Dyer, Acc. Chem. Res. 31(), 1998
Time-resolved infrared study of the helix-coil transition using (13)C-labeled helical peptides.
Huang CY, Getahun Z, Wang T, DeGrado WF, Gai F., J. Am. Chem. Soc. 123(48), 2001
PMID: 11724630
Two-dimensional infrared spectroscopy of peptides by phase-controlled femtosecond vibrational photon echoes.
Asplund MC, Zanni MT, Hochstrasser RM., Proc. Natl. Acad. Sci. U.S.A. 97(15), 2000
PMID: 10890905
Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman.
Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA., Science 310(5750), 2005
PMID: 16284176
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19862409
PubMed | Europe PMC

Suchen in

Google Scholar