Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development

Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009)
PLANT CELL AND ENVIRONMENT 32(12): 1761-1777.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ; ;
Abstract / Bemerkung
It is not known how the uptake and retention of the key osmolyte K+ in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K+ channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K+ transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K+ channels which are inhibited by Cs+. Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K+ or salinity, despite major changes in K+ concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K+ relations of growing barley leaf cells are discussed.
Stichworte
Hordeum vulgare; leaf elongation; potassium nutrition; single-cell analyses; Xenopus laevis oocytes; ion channel; water relations
Erscheinungsjahr
2009
Zeitschriftentitel
PLANT CELL AND ENVIRONMENT
Band
32
Ausgabe
12
Seite(n)
1761-1777
ISSN
0140-7791
eISSN
1365-3040
Page URI
https://pub.uni-bielefeld.de/record/1589770

Zitieren

Boscari A, Clement M, Volkov V, et al. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT. 2009;32(12):1761-1777.
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A. J., Amtmann, A., et al. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT, 32(12), 1761-1777. doi:10.1111/j.1365-3040.2009.02033.x
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A. J., Amtmann, A., and Fricke, W. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT 32, 1761-1777.
Boscari, A., et al., 2009. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT, 32(12), p 1761-1777.
A. Boscari, et al., “Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development”, PLANT CELL AND ENVIRONMENT, vol. 32, 2009, pp. 1761-1777.
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A.J., Amtmann, A., Fricke, W.: Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT. 32, 1761-1777 (2009).
Boscari, Alexandre, Clement, Mathilde, Volkov, Vadim, Golldack, Dortje, Hybiak, Jolanta, Miller, Anthony J., Amtmann, Anna, and Fricke, Wieland. “Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development”. PLANT CELL AND ENVIRONMENT 32.12 (2009): 1761-1777.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19682291
PubMed | Europe PMC

Suchen in

Google Scholar