Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development

Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Boscari, Alexandre; Clement, Mathilde; Volkov, Vadim; Golldack, DortjeUniBi; Hybiak, Jolanta; Miller, Anthony J.; Amtmann, Anna; Fricke, Wieland
Abstract / Bemerkung
It is not known how the uptake and retention of the key osmolyte K+ in cells are mediated in growing leaf tissue. In the present study on the growing leaf 3 of barley, we have cloned the full-length coding sequence of three genes which encode putative K+ channels (HvAKT1, HvAKT2, HvKCO1/HvTPK1), and of one gene which encodes a putative K+ transporter (HvHAK4). The functionality of the gene products of HvAKT1 and HvAKT2 was tested through expression in Xenopus laevis oocytes. Both are inward-rectifying K+ channels which are inhibited by Cs+. Function of HvAKT1 in oocytes requires co-expression of a calcineurin-interacting protein kinase (AtCIPK23) and a calcineurin B-like protein (AtCBL9) from Arabidopsis, showing cross-species complementation of function. In planta, HvAKT1 is expressed primarily in roots, but is also expressed in leaf tissue. HvAKT2 is expressed particularly in leaf tissue, and HvHAK4 is expressed particularly in growing leaf tissue. Within leaves, HvAKT1 and HvAKT2 are expressed predominantly in mesophyll. Expression of genes changes little in response to low external K+ or salinity, despite major changes in K+ concentrations and osmolality of cells. Possible contributions of HvAKT1, HvAKT2, HvKCO1 and HvHAK4 to regulation of K+ relations of growing barley leaf cells are discussed.
Hordeum vulgare; leaf elongation; potassium nutrition; single-cell analyses; Xenopus laevis oocytes; ion channel; water relations
Page URI


Boscari A, Clement M, Volkov V, et al. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT. 2009;32(12):1761-1777.
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A. J., Amtmann, A., et al. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT, 32(12), 1761-1777. https://doi.org/10.1111/j.1365-3040.2009.02033.x
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A. J., Amtmann, A., and Fricke, W. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT 32, 1761-1777.
Boscari, A., et al., 2009. Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT, 32(12), p 1761-1777.
A. Boscari, et al., “Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development”, PLANT CELL AND ENVIRONMENT, vol. 32, 2009, pp. 1761-1777.
Boscari, A., Clement, M., Volkov, V., Golldack, D., Hybiak, J., Miller, A.J., Amtmann, A., Fricke, W.: Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. PLANT CELL AND ENVIRONMENT. 32, 1761-1777 (2009).
Boscari, Alexandre, Clement, Mathilde, Volkov, Vadim, Golldack, Dortje, Hybiak, Jolanta, Miller, Anthony J., Amtmann, Anna, and Fricke, Wieland. “Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development”. PLANT CELL AND ENVIRONMENT 32.12 (2009): 1761-1777.

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters.
Locascio A, Andrés-Colás N, Mulet JM, Yenush L., Int J Mol Sci 20(9), 2019
PMID: 31052176
Cloning and functional characterization of HKT1 and AKT1 genes of Fragaria spp.-Relationship to plant response to salt stress.
Garriga M, Raddatz N, Véry AA, Sentenac H, Rubio-Meléndez ME, González W, Dreyer I., J Plant Physiol 210(), 2017
PMID: 28039842
Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production.
Luan M, Tang RJ, Tang Y, Tian W, Hou C, Zhao F, Lan W, Luan S., J Exp Bot 68(12), 2017
PMID: 27965362
A Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K+ Loading into Xylem Sap.
Nguyen TH, Huang S, Meynard D, Chaine C, Michel R, Roelfsema MRG, Guiderdoni E, Sentenac H, Véry AA., Plant Physiol 174(4), 2017
PMID: 28626008
Engineering crop nutrient efficiency for sustainable agriculture.
Chen L, Liao H., J Integr Plant Biol 59(10), 2017
PMID: 28600834
A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley.
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N., Front Plant Sci 7(), 2016
PMID: 26955376
Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.
Islam F, Ali B, Wang J, Farooq MA, Gill RA, Ali S, Wang D, Zhou W., Plant Physiol Biochem 107(), 2016
PMID: 27258572
Molecular Cloning and Functional Analysis of a Na+-Insensitive K+ Transporter of Capsicum chinense Jacq.
Ruiz-Lau N, Bojórquez-Quintal E, Benito B, Echevarría-Machado I, Sánchez-Cach LA, Medina-Lara MF, Martínez-Estévez M., Front Plant Sci 7(), 2016
PMID: 28083010
K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley.
Wu H, Zhu M, Shabala L, Zhou M, Shabala S., J Integr Plant Biol 57(2), 2015
PMID: 25040138
United in diversity: mechanosensitive ion channels in plants.
Hamilton ES, Schlegel AM, Haswell ES., Annu Rev Plant Biol 66(), 2015
PMID: 25494462
Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots.
Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL., Sci Rep 5(), 2015
PMID: 26213372
Characterization of shrunken endosperm mutants in barley.
Ma J, Jiang QT, Wei L, Wang JR, Chen GY, Liu YX, Li W, Wei YM, Liu C, Zheng YL., Gene 539(1), 2014
PMID: 24508469
Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?
Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H., J Plant Physiol 171(9), 2014
PMID: 24666983
The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex.
Li J, Long Y, Qi GN, Li J, Xu ZJ, Wu WH, Wang Y., Plant Cell 26(8), 2014
PMID: 25096783
Characterization and expression analysis of waxy alleles in barley accessions.
Ma J, Jiang QT, Zhao QZ, Zhao S, Lan XJ, Dai SF, Lu ZX, Liu C, Wei YM, Zheng YL., Genetica 141(4-6), 2013
PMID: 23690246
Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells.
Hwang H, Yoon J, Kim HY, Min MK, Kim JA, Choi EH, Lan W, Bae YM, Luan S, Cho H, Kim BG., PLoS One 8(8), 2013
PMID: 23967316
Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues.
Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corrêa LG, Ramírez-Aguilar SJ, Gomez-Porras JL, González W, Thibaud JB, van Dongen JT, Dreyer I., Proc Natl Acad Sci U S A 108(2), 2011
PMID: 21187374
Vacuolar two-pore K+ channels act as vacuolar osmosensors.
Maathuis FJ., New Phytol 191(1), 2011
PMID: 21371040
Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance.
Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA., Plant J 68(3), 2011
PMID: 21749504

68 References

Daten bereitgestellt von Europe PubMed Central.

The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signalling
Armengaud, Plant Physiology 136(), 2004
Plant responses to potassium deficiencies: a role for potassium transport proteins.
Ashley MK, Grant M, Grabov A., J. Exp. Bot. 57(2), 2005
PMID: 16364949
Single-cell measurements of the contributions of cytosolic Na(+) and K(+) to salt tolerance.
Carden DE, Walker DJ, Flowers TJ, Miller AJ., Plant Physiol. 131(2), 2003
PMID: 12586891
Auxin-induced growth and its linkage to potassium channels
Claussen, Planta 201(), 1997
Potassium activities in cell compartments of salt-grown barley leaves.
Cuin TA, Miller AJ, Laurie SA, Leigh RA., J. Exp. Bot. 54(383), 2003
PMID: 12554708
Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1.
Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B., Plant J. 29(6), 2002
PMID: 12148538
Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis.
Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R., Planta 216(2), 2002
PMID: 12447548
Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis.
Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP., Plant Physiol. 127(3), 2001
PMID: 11706182
Control of leaf cell elongation in barley. Generation rates of osmotic pressure and turgor, and growth-associated water potential gradients
Fricke, Planta 206(), 1998
The biophysics of leaf growth in salt-stressed barley. A study at the cell level
Fricke, Plant Physiology 129(), 2002
The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl
Fricke, Journal of Experimental Botany 47(), 1996
Why do leaves and leaf cells of N-limited barley elongate at reduced rates?
Fricke, Planta 202(), 1997
The short-term growth response to salt of the developing barley leaf.
Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V., J. Exp. Bot. 57(5), 2006
PMID: 16513814
AtKuP1: a dual-affinity K+ transporter from Arabidopsis.
Fu HH, Luan S., Plant Cell 10(1), 1998
PMID: 9477572
Outer pore residues control the H(+) and K(+) sensitivity of the Arabidopsis potassium channel AKT3.
Geiger D, Becker D, Lacombe B, Hedrich R., Plant Cell 14(8), 2002
PMID: 12172027
The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis.
Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJ., Proc. Natl. Acad. Sci. U.S.A. 104(25), 2007
PMID: 17563365
Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently.
Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ., Plant Mol. Biol. 51(1), 2003
PMID: 12602892
A role for the AKT1 potassium channel in plant nutrition.
Hirsch RE, Lewis BD, Spalding EP, Sussman MR., Science 280(5365), 1998
PMID: 9572739
External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism.
Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I., Plant J. 46(2), 2006
PMID: 16623889
Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells
Karley, Trends in Plant Sciences 5(), 2000
Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley.
Karley AJ, Leigh RA, Sanders D., Plant Physiol. 122(3), 2000
PMID: 10712547
AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity.
Kim EJ, Kwak JM, Uozumi N, Schroeder JI., Plant Cell 10(1), 1998
PMID: 9477571
Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J., Plant Physiol. 134(1), 2004
PMID: 14730064
A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis.
Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB., Plant Cell 12(6), 2000
PMID: 10852932
In planta AKT2 subunits constitute a pH- and Ca2+-sensitive inward rectifying K+ channel.
Latz A, Ivashikina N, Fischer S, Ache P, Sano T, Becker D, Deeken R, Hedrich R., Planta 225(5), 2006
PMID: 17146665
K+ channel activity in plants: genes, regulations and functions.
Lebaudy A, Very AA, Sentenac H., FEBS Lett. 581(12), 2007
PMID: 17418142
Ion distribution in cereal leaves: pathways and mechanisms
Leigh, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 341(), 1993
A Ca(2)+ signaling pathway regulates a K(+) channel for low-K response in Arabidopsis.
Li L, Kim BG, Cheong YH, Pandey GK, Luan S., Proc. Natl. Acad. Sci. U.S.A. 103(33), 2006
PMID: 16895985
Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.
Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A., Plant J. 35(6), 2003
PMID: 12969422
Extraction and analysis of sap from individual wheat leaf cells: the effect of sampling speed on the osmotic pressure of extracted sap
Malone, Plant, Cell & Environment 12(), 1989
AKT3, a phloem-localized K+ channel, is blocked by protons.
Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377458
Xenopus oocytes as an expression system for plant transporters.
Miller AJ, Zhou JJ., Biochim. Biophys. Acta 1465(1-2), 2000
PMID: 10748264
Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism.
Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R., Proc. Natl. Acad. Sci. U.S.A. 96(21), 1999
PMID: 10518597
Guard cell inward K+ channel activity in arabidopsis involves expression of the twin channel subunits KAT1 and KAT2.
Pilot G, Lacombe B, Gaymard F, Cherel I, Boucherez J, Thibaud JB, Sentenac H., J. Biol. Chem. 276(5), 2000
PMID: 11042178
Turgor-regulation during extension growth and osmotic stress of maize roots. An example of single-cell sampling
Pritchard, Plant and Soil 187(), 1996
Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf.
Richardson A, Boscari A, Schreiber L, Kerstiens G, Jarvis M, Herzyk P, Fricke W., Planta 226(6), 2007
PMID: 17661078
TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs.
Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P., Plant Cell 13(1), 2001
PMID: 11158535
Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells
Rubio, Physiologia Plantarum 109(), 2000
The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter.
Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A., Plant Cell 9(12), 1997
PMID: 9437867
High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways.
Santa-Maria GE, Danna CH, Czibener C., Plant Physiol. 123(1), 2000
PMID: 10806246
Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters.
Senn ME, Rubio F, Banuelos MA, Rodriguez-Navarro A., J. Biol. Chem. 276(48), 2001
PMID: 11562376
BarleyBase--an expression profiling database for plant genomics.
Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA., Nucleic Acids Res. 33(Database issue), 2005
PMID: 15608273
The barley two-pore K+ -channel HvKCO1 interacts with 14-3-3 proteins in an isoform specific manner.
Sinnige MP, Hoopen Pten, Wijngaard PWJvanden, Roobeek I, Schoonheim PJ, Mol JNM, Boer AHde., Plant Sci. 169(3), 2005
PMID: IND43738415
Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium.
Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD, Spalding EP., J. Gen. Physiol. 113(6), 1999
PMID: 10352038

Swofford, 2003
Cloning and functional analysis of the K⁺ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants
Takahashi R, Nishio T, Ichizen N, Takano T., Biotechnol. Lett. 29(3), 2007
PMID: IND43879569
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791

Tomos, 1994
Cation channels in the Arabidopsis plasma membrane
Véry, Trends in Plant Sciences 7(), 2002
Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots.
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A., Plant J. 40(4), 2004
PMID: 15500468

Potassium homeostasis in vacuolate plant cells.
Walker DJ, Leigh RA, Miller AJ., Proc. Natl. Acad. Sci. U.S.A. 93(19), 1996
PMID: 11607707
HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues
Wei, Plant Cell Physiology 48(), 2007


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 19682291
PubMed | Europe PMC

Suchen in

Google Scholar