An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris

Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T (2009)
Plant Molecular Biology 71(6): 585-597.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
We describe a non-LTR retrotransposon family,BvL, of the long interspersed nuclear elements L1 clade isolated from sugar beet (Beta vulgaris). Characteristic molecular domains of three full-length BvL elements were determined in detail, showing that coding sequences are interrupted and most likely non-functionally. In addition,eight highly conserved endonuclease regions were defined by comparison with other plant LINEs. The abundant BvL family is widespread within the genus Beta, however, the vast majority of BvL copies are extremely 50 truncated indicating an error-prone reverse transcriptase activity. The dispersed distribution of BvL copies on all sugar beet chromosomes with exclusion of most heterochromatic regions was shown by fluorescent in situ hybridization. The analysis of BvL 30 end sequences and corresponding flanking regions, respectively, revealed the preferred integration of BvL into A/T-rich regions of the sugar beet genome, but no specific target sequences.
Erscheinungsjahr
Zeitschriftentitel
Plant Molecular Biology
Band
71
Ausgabe
6
Seite(n)
585-597
ISSN
eISSN
PUB-ID

Zitieren

Wenke T, Holtgräwe D, Horn AV, Weisshaar B, Schmidt T. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Molecular Biology. 2009;71(6):585-597.
Wenke, T., Holtgräwe, D., Horn, A. V., Weisshaar, B., & Schmidt, T. (2009). An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Molecular Biology, 71(6), 585-597. doi:10.1007/s11103-009-9542-6
Wenke, T., Holtgräwe, D., Horn, A. V., Weisshaar, B., and Schmidt, T. (2009). An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Molecular Biology 71, 585-597.
Wenke, T., et al., 2009. An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Molecular Biology, 71(6), p 585-597.
T. Wenke, et al., “An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris”, Plant Molecular Biology, vol. 71, 2009, pp. 585-597.
Wenke, T., Holtgräwe, D., Horn, A.V., Weisshaar, B., Schmidt, T.: An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Molecular Biology. 71, 585-597 (2009).
Wenke, Torsten, Holtgräwe, Daniela, Horn, Axel V., Weisshaar, Bernd, and Schmidt, Thomas. “An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris”. Plant Molecular Biology 71.6 (2009): 585-597.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Convergence of retrotransposons in oomycetes and plants.
Ustyantsev K, Blinov A, Smyshlyaev G., Mob DNA 8(), 2017
PMID: 28293305
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T., Plant J 90(6), 2017
PMID: 28257158
Identification and characterization of mobile genetic elements LINEs from Brassica genome.
Nouroz F, Noreen S, Khan MF, Ahmed S, Heslop-Harrison JSP., Gene 627(), 2017
PMID: 28606835
Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species.
Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T., Plant J 85(2), 2016
PMID: 26676716
Characterization of new transposable element sub-families from white clover (Trifolium repens) using PCR amplification.
Becker KE, Thomas MC, Martini S, Shuipys T, Didorchuk V, Shanker RM, Laten HM., Genetica 144(5), 2016
PMID: 27671023
Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades.
Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T., Plant J 79(3), 2014
PMID: 24862340
Retrotransposon replication in plants.
Schulman AH., Curr Opin Virol 3(6), 2013
PMID: 24035277
Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.
Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant J 72(4), 2012
PMID: 22804913
Epigenetic profiling of heterochromatic satellite DNA.
Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Chromosoma 120(4), 2011
PMID: 21594600
Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris.
Zakrzewski F, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T., BMC Plant Biol 10(), 2010
PMID: 20064260

62 References

Daten bereitgestellt von Europe PubMed Central.


K, Plant Mol Biol Rep 9(), 1991
Transposable element contributions to plant gene and genome evolution.
Bennetzen JL., Plant Mol. Biol. 42(1), 2000
PMID: 10688140
GeneWise and Genomewise.
Birney E, Clamp M, Durbin R., Genome Res. 14(5), 2004
PMID: 15123596
Isolation of an active human transposable element.
Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr., Science 254(5039), 1991
PMID: 1662412

HE, Euphytica 41(), 1989
Genome size and the proportion of repeated nucleotide sequence DNA in plants.
Flavell RB, Bennett MD, Smith JB, Smith DB., Biochem. Genet. 12(4), 1974
PMID: 4441361
Plant transposable elements and the genome.
Flavell AJ, Pearce SR, Kumar A., Curr. Opin. Genet. Dev. 4(6), 1994
PMID: 7888753

TA, Nucl Acids Symp Ser 41(), 1999
High resolution FISH in plants - techniques and applications.
Hans de Jong J , Fransz P, Zabel P., Trends Plant Sci. 4(7), 1999
PMID: 10407441

AUTHOR UNKNOWN, 0

J, Theor Appl Genet 27(), 1957

S, Proc Natl Acad Sci USA 89(), 1992
Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region.
Higashiyama T, Noutoshi Y, Fujie M, Yamada T., EMBO J. 16(12), 1997
PMID: 9218812
Retrotransposon populations of Vicia species with varying genome size.
Hill P, Burford D, Martin DM, Flavell AJ., Mol. Genet. Genomics 273(5), 2005
PMID: 15891910
A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B.
Hohmann U, Jacobs G, Telgmann A, Gaafar RM, Alam S, Jung C., Mol. Genet. Genomics 269(1), 2003
PMID: 12715161

G, Willdenowia 36(), 2006

S, Ann Bot 82(), 1998
The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms.
Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T., Plant Mol. Biol. 36(6), 1998
PMID: 9520275
Plant retrotransposons.
Kumar A, Bennetzen JL., Annu. Rev. Genet. 33(), 1999
PMID: 10690416
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036

QH, Proc Natl Acad Sci USA 97(), 2000
An abundant LINE-like element amplified in the genome of Lilium speciosum.
Leeton PR, Smyth DR., Mol. Gen. Genet. 237(1-2), 1993
PMID: 7681139

AUTHOR UNKNOWN, 0
The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons.
Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA 3rd., Mol. Cell. Biol. 6(1), 1986
PMID: 3023821
The structures of mouse and human L1 elements reflect their insertion mechanism.
Martin SL, Li WL, Furano AV, Boissinot S., Cytogenet. Genome Res. 110(1-4), 2005
PMID: 16093676

JM, Plant Mol Biol Rep 22(), 2004
Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).
Menzel G, Dechyeva D, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., Ann. Bot. 102(4), 2008
PMID: 18682437

B, Nucl Acids Res 32(), 2004

J, Mol Ecol Notes 4(), 2004
Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes.
Noma K, Ohtsubo E, Ohtsubo H., Mol. Gen. Genet. 261(1), 1999
PMID: 10071212
MrBayes 3: Bayesian phylogenetic inference under mixed models.
Ronquist F, Huelsenbeck JP., Bioinformatics 19(12), 2003
PMID: 12912839

MA, Proc Natl Acad Sci USA 81(), 1984
Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa.
Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S., Plant Mol. Biol. 44(6), 2000
PMID: 11202435

J, 2001
Many human L1 elements are capable of retrotransposition.
Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr., Nat. Genet. 16(1), 1997
PMID: 9140393

T, Trends Plant Sci 3(), 1998

T, Chromosom Res 3(), 1995
A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet.
Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C., Mol. Genet. Genomics 275(5), 2006
PMID: 16496176

T, 2000

ST, Genome Biol 3(), 2002
The genetic organization of chromosomes.
Thomas CA Jr., Annu. Rev. Genet. 5(), 1971
PMID: 16097657
Survey of transposable elements from rice genomic sequences.
Turcotte K, Srinivasan S, Bureau T., Plant J. 25(2), 2001
PMID: 11169193
LINEs and gypsy-like retrotransposons in Hordeum species.
Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS., Plant Mol. Biol. 49(1), 2002
PMID: 12008894

AUTHOR UNKNOWN, 0
Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana.
Wright DA, Ke N, Smalle J, Hauge BM, Goodman HM, Voytas DF., Genetics 142(2), 1996
PMID: 8852854
Transposable element distribution, abundance and role in genome size variation in the genus Oryza.
Zuccolo A, Sebastian A, Talag J, Yu Y, Kim H, Collura K, Kudrna D, Wing RA., BMC Evol. Biol. 7(), 2007
PMID: 17727727

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19697140
PubMed | Europe PMC

Suchen in

Google Scholar