The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy

Nack M, Radu I, Bamann C, Bamberg E, Heberle J (2009)
FEBS Letters 583(22): 3676-3680.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Channelrhodopsin-2 mediates phototaxis in green algae by acting as a light-gated cation channel. As a result of this property, it is used as a novel optogenetic tool in neurophysiological applications. Structural information is still scant and we present here the first resonance Raman spectra of channelrhodopsin-2. Spectra of detergent solubilized and lipid-reconstituted protein were recorded under pre-resonant conditions to exclusively probe retinal in its electronic ground state. All-trans retinal was identified to be the favoured configuration of the chromophore but significant contributions of 13-cis were detected. Pre-illumination hardly changed the isomeric composition but small amounts of presumably 9-cis retinal were found in the light-adapted state. Spectral analysis suggested that the Schiff base proton is strongly hydrogen-bonded to a nearby water molecule. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
FEBS Letters
Band
583
Ausgabe
22
Seite(n)
3676-3680
ISSN
PUB-ID

Zitieren

Nack M, Radu I, Bamann C, Bamberg E, Heberle J. The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS Letters. 2009;583(22):3676-3680.
Nack, M., Radu, I., Bamann, C., Bamberg, E., & Heberle, J. (2009). The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS Letters, 583(22), 3676-3680. doi:10.1016/j.febslet.2009.10.052
Nack, M., Radu, I., Bamann, C., Bamberg, E., and Heberle, J. (2009). The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS Letters 583, 3676-3680.
Nack, M., et al., 2009. The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS Letters, 583(22), p 3676-3680.
M. Nack, et al., “The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy”, FEBS Letters, vol. 583, 2009, pp. 3676-3680.
Nack, M., Radu, I., Bamann, C., Bamberg, E., Heberle, J.: The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS Letters. 583, 3676-3680 (2009).
Nack, Melanie, Radu, Ionela, Bamann, Christian, Bamberg, Ernst, and Heberle, Joachim. “The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy”. FEBS Letters 583.22 (2009): 3676-3680.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein bioelectronics: a review of what we do and do not know.
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D., Rep Prog Phys 81(2), 2018
PMID: 29303117
Retinal isomerization and water-pore formation in channelrhodopsin-2.
Ardevol A, Hummer G., Proc Natl Acad Sci U S A 115(14), 2018
PMID: 29555736
Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
Krause BS, Grimm C, Kaufmann JCD, Schneider F, Sakmar TP, Bartl FJ, Hegemann P., Biophys J 112(6), 2017
PMID: 28355544
Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K.
Yi A, Li H, Mamaeva N, Fernandez De Cordoba RE, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ., Biochemistry 56(16), 2017
PMID: 28350445
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
Kaufmann JCD, Krause BS, Grimm C, Ritter E, Hegemann P, Bartl FJ., J Biol Chem 292(34), 2017
PMID: 28659342
Structural insights into ion conduction by channelrhodopsin 2.
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V., Science 358(6366), 2017
PMID: 29170206
Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant.
Guo Y, Beyle FE, Bold BM, Watanabe HC, Koslowski A, Thiel W, Hegemann P, Marazzi M, Elstner M., Chem Sci 7(6), 2016
PMID: 30155032
Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
Yi A, Mamaeva N, Li H, Spudich JL, Rothschild KJ., Biochemistry 55(16), 2016
PMID: 27039989
Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae.
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ., Biochemistry 54(2), 2015
PMID: 25469620
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J., Biophys J 109(2), 2015
PMID: 26200864
Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin.
Ritter E, Puskar L, Bartl FJ, Aziz EF, Hegemann P, Schade U., Front Mol Biosci 2(), 2015
PMID: 26217670
The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity.
Stensitzki T, Muders V, Schlesinger R, Heberle J, Heyne K., Front Mol Biosci 2(), 2015
PMID: 26258130
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C., Proc Natl Acad Sci U S A 112(32), 2015
PMID: 26216996
Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin.
Dokukina I, Weingart O., Phys Chem Chem Phys 17(38), 2015
PMID: 26351704
Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
Lórenz-Fonfría VA, Heberle J., Biochim Biophys Acta 1837(5), 2014
PMID: 24212055
Channelrhodopsins: a bioinformatics perspective.
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN., Biochim Biophys Acta 1837(5), 2014
PMID: 24252597
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H., Chem Rev 114(1), 2014
PMID: 24364740
Role of a helix B lysine residue in the photoactive site in channelrhodopsins.
Li H, Govorunova EG, Sineshchekov OA, Spudich JL., Biophys J 106(8), 2014
PMID: 24739160
Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
Muders V, Kerruth S, Lórenz-Fonfría VA, Bamann C, Heberle J, Schlesinger R., FEBS Lett 588(14), 2014
PMID: 24859039
Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ., Biochemistry 53(24), 2014
PMID: 24869998
Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism.
Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M., J Mol Biol 425(10), 2013
PMID: 23376098
Light-dark adaptation of channelrhodopsin C128T mutant.
Ritter E, Piwowarski P, Hegemann P, Bartl FJ., J Biol Chem 288(15), 2013
PMID: 23439646
Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating.
Lórenz-Fonfría VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J., Proc Natl Acad Sci U S A 110(14), 2013
PMID: 23509282
Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL., J Biol Chem 288(41), 2013
PMID: 23995841
Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations.
Scholz F, Bamberg E, Bamann C, Wachtveitl J., Biophys J 102(11), 2012
PMID: 22713581
Channelrhodopsin engineering and exploration of new optogenetic tools.
Hegemann P, Möglich A., Nat Methods 8(1), 2011
PMID: 21191371
The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J., Photochem Photobiol Sci 9(2), 2010
PMID: 20126794
Evolution of the channelrhodopsin photocycle model.
Stehfest K, Hegemann P., Chemphyschem 11(6), 2010
PMID: 20349494
The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps.
Verhoefen MK, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J., Chemphyschem 11(14), 2010
PMID: 20730849

33 References

Daten bereitgestellt von Europe PubMed Central.

Channelrhodopsins: directly light-gated cation channels.
Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E., Biochem. Soc. Trans. 33(Pt 4), 2005
PMID: 16042615
Photoactivation of channelrhodopsin.
Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P., J. Biol. Chem. 283(3), 2007
PMID: 17993465
Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function.
Bamann C, Kirsch T, Nagel G, Bamberg E., J. Mol. Biol. 375(3), 2007
PMID: 18037436
Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ., J. Biol. Chem. 283(50), 2008
PMID: 18927082
Conformational changes of channelrhodopsin-2.
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J., J. Am. Chem. Soc. 131(21), 2009
PMID: 19422231
"Vision" in single-celled algae.
Kateriya S, Nagel G, Bamberg E, Hegemann P., News Physiol. Sci. 19(), 2004
PMID: 15143209
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 100(24), 2003
PMID: 14615590
Multimodal fast optical interrogation of neural circuitry.
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K., Nature 446(7136), 2007
PMID: 17410168
Millisecond-timescale, genetically targeted optical control of neural activity.
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K., Nat. Neurosci. 8(9), 2005
PMID: 16116447
Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli.
Mironova OS, Efremov RG, Person B, Heberle J, Budyak IL, Buldt G, Schlesinger R., FEBS Lett. 579(14), 2005
PMID: 15919078
Retinal isomer ratio in dark-adapted purple membrane and bacteriorhodopsin monomers.
Scherrer P, Mathew MK, Sperling W, Stoeckenius W., Biochemistry 28(2), 1989
PMID: 2713349
Application of Raman spectroscopy to retinal proteins
Althaus, Isr. J. Chem. 35(), 1995
Resonance Raman studies of the purple membrane.
Aton B, Doukas AG, Callender RH, Becher B, Ebrey TG., Biochemistry 16(13), 1977
PMID: 880292
Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin
Smith, J. Phys. Chem. 91(), 1987
Determination of retinal Schiff base configuration in bacteriorhodopsin.
Smith SO, Myers AB, Pardoen JA, Winkel C, Mulder PP, Lugtenburg J, Mathies R., Proc. Natl. Acad. Sci. U.S.A. 81(7), 1984
PMID: 16593445
Photochemistry and dark equilibrium of retinal isomers and bacteriorhodopsin isomers.
Sperling W, Carl P, Rafferty Ch, Dencher NA., Biophys. Struct. Mech. 3(2), 1977
PMID: 890059
Identification of retinal isomers isolated from bacteriorhodopsin.
Pettei MJ, Yudd AP, Nakanishi K, Henselman R, Stoeckenius W., Biochemistry 16(9), 1977
PMID: 870032
Dark-adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases.
Harbison GS, Smith SO, Pardoen JA, Winkel C, Lugtenburg J, Herzfeld J, Mathies R, Griffin RG., Proc. Natl. Acad. Sci. U.S.A. 81(6), 1984
PMID: 6584904
Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
Ihara K, Amemiya T, Miyashita Y, Mukohata Y., Biophys. J. 67(3), 1994
PMID: 7811932
Removal of methyl-groups from retinal controls the activity of bacteriorhodopsin
Gärtner, Biochemistry 22(), 1983
Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins.
Kralj JM, Spudich EN, Spudich JL, Rothschild KJ., J Phys Chem B 112(37), 2008
PMID: 18717545
All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin.
Hegemann P, Gartner W, Uhl R., Biophys. J. 60(6), 1991
PMID: 19431816
Proteorhodopsin is a light-driven proton pump with variable vectoriality.
Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E., J. Mol. Biol. 321(5), 2002
PMID: 12206764
Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy.
Fodor SP, Gebhard R, Lugtenburg J, Bogomolni RA, Mathies RA., J. Biol. Chem. 264(31), 1989
PMID: 2808377
Role of water in bacteriorhodopsins chromophore – resonance Raman-study
Hildebrandt, Biochemistry 23(), 1984
Role of internal water molecules in bacteriorhodopsin.
Kandori H., Biochim. Biophys. Acta 1460(1), 2000
PMID: 10984599
The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin.
Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS., Biophys. J. 96(4), 2009
PMID: 19217863
Resonance Raman spectroscopy of sensory rhodopsin II from Natronobacterium pharaonis.
Gellini C, Luttenberg B, Sydor J, Engelhard M, Hildebrandt P., FEBS Lett. 472(2-3), 2000
PMID: 10788623
Vibrational analysis of the all-trans retinal protonated Schiff base.
Smith SO, Myers AB, Mathies RA, Pardoen JA, Winkel C, van den Berg EM, Lugtenburg J., Biophys. J. 47(5), 1985
PMID: 4016185
Resonance Raman-study on binding of chloride to the chromophore of halorhodopsin
Maeda, Biochemistry 24(), 1985

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19854176
PubMed | Europe PMC

Suchen in

Google Scholar