Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase

Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009)
ACS NANO 3(12): 4055-4061.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krassen, Henning; Schwarze, Alexander; Friedrich, Baerbel; Ataka, Kenichi; Lenz, Oliver; Heberle, Joachim
Abstract / Bemerkung
Nature provides key components for generating fuels from renewable resources in the form of enzymatic nanomachines which catalyze crucial steps in biological energy conversion, for example, the photosynthetic apparatus, which transforms solar power into chemical energy, and hydrogenases, capable of generating molecular hydrogen. As sunlight is usually used to synthesize carbohydrates, direct generation of hydrogen from light represents an exception in nature. On the molecular level, the crucial step for conversion of solar energy into H-2 lies in the efficient electronic coupling of photosystem I and hydrogenase. Here we show the stepwise assembly of a hybrid complex consisting of photosystem I and hydrogenase on a solid gold surface. This device gave rise to light-induced H-2 evolution. Hydrogen production is possible at far higher potential and thus lower energy compared to those of previously described (bio)nanoelectronic devices that did not employ the photosynthesis apparatus. The successful demonstration of efficient solar-to-hydrogen conversion may serve as a blueprint for the establishment of this system in a living organism with the paramount advantage of self-replication.
Stichworte
biohydrogen production; photosystem; hydrogenase; bionanotechnology; nanobiotechnology
Erscheinungsjahr
2009
Zeitschriftentitel
ACS NANO
Band
3
Ausgabe
12
Seite(n)
4055-4061
ISSN
1936-0851
eISSN
1936-086X
Page URI
https://pub.uni-bielefeld.de/record/1589254

Zitieren

Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J. Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS NANO. 2009;3(12):4055-4061.
Krassen, H., Schwarze, A., Friedrich, B., Ataka, K., Lenz, O., & Heberle, J. (2009). Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS NANO, 3(12), 4055-4061. https://doi.org/10.1021/nn900748j
Krassen, Henning, Schwarze, Alexander, Friedrich, Baerbel, Ataka, Kenichi, Lenz, Oliver, and Heberle, Joachim. 2009. “Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase”. ACS NANO 3 (12): 4055-4061.
Krassen, H., Schwarze, A., Friedrich, B., Ataka, K., Lenz, O., and Heberle, J. (2009). Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS NANO 3, 4055-4061.
Krassen, H., et al., 2009. Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS NANO, 3(12), p 4055-4061.
H. Krassen, et al., “Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase”, ACS NANO, vol. 3, 2009, pp. 4055-4061.
Krassen, H., Schwarze, A., Friedrich, B., Ataka, K., Lenz, O., Heberle, J.: Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS NANO. 3, 4055-4061 (2009).
Krassen, Henning, Schwarze, Alexander, Friedrich, Baerbel, Ataka, Kenichi, Lenz, Oliver, and Heberle, Joachim. “Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase”. ACS NANO 3.12 (2009): 4055-4061.

61 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Advancing Techniques for Investigating the Enzyme-Electrode Interface.
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E., Acc Chem Res 52(5), 2019
PMID: 31042353
Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis.
Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G, D'Andrea C, Romeo A, Ballottari M, Perduca M., ACS Sustain Chem Eng 7(12), 2019
PMID: 31372325
Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires.
Kowalska D, Szalkowski M, Ashraf K, Grzelak J, Lokstein H, Niedziolka-Jonsson J, Cogdell R, Mackowski S., Photosynth Res 135(1-3), 2018
PMID: 29090426
Molecular Mechanisms of Photoadaptation of Photosystem I Supercomplex from an Evolutionary Cyanobacterial/Algal Intermediate.
Haniewicz P, Abram M, Nosek L, Kirkpatrick J, El-Mohsnawy E, Olmos JDJ, Kouřil R, Kargul JM., Plant Physiol 176(2), 2018
PMID: 29187568
In-vivo turnover frequency of the cyanobacterial NiFe-hydrogenase during photohydrogen production outperforms in-vitro systems.
Gutekunst K, Hoffmann D, Westernströer U, Schulz R, Garbe-Schönberg D, Appel J., Sci Rep 8(1), 2018
PMID: 29666458
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Mezzetti A, Leibl W., Photosynth Res 131(2), 2017
PMID: 27678250
Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
Reeve HA, Ash PA, Park H, Huang A, Posidias M, Tomlinson C, Lenz O, Vincent KA., Biochem J 474(2), 2017
PMID: 28062838
Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana.
Tian L, Xu P, Chukhutsina VU, Holzwarth AR, Croce R., Proc Natl Acad Sci U S A 114(18), 2017
PMID: 28416696
Hybrid bio-photo-electro-chemical cells for solar water splitting.
Pinhassi RI, Kallmann D, Saper G, Dotan H, Linkov A, Kay A, Liveanu V, Schuster G, Adir N, Rothschild A., Nat Commun 7(), 2016
PMID: 27550091
Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces.
Swainsbury DJ, Harniman RL, Di Bartolo ND, Liu J, Harper WF, Corrie AS, Jones MR., Biochim Biophys Acta 1857(12), 2016
PMID: 27614060
Solar-driven proton and carbon dioxide reduction to fuels—lessons from metalloenzymes.
Bachmeier A, Armstrong F., Curr Opin Chem Biol 25(), 2015
PMID: 25621455
Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production.
Caputo CA, Wang L, Beranek R, Reisner E., Chem Sci 6(10), 2015
PMID: 28757952
Insights into colour-tuning of chlorophyll optical response in green plants.
Jornet-Somoza J, Alberdi-Rodriguez J, Milne BF, Andrade X, Marques MA, Nogueira F, Oliveira MJ, Stewart JJ, Rubio A., Phys Chem Chem Phys 17(40), 2015
PMID: 26250099
Photosynthetic machineries in nano-systems.
Nagy L, Magyar M, Szabó T, Hajdu K, Giotta L, Dorogi M, Milano F., Curr Protein Pept Sci 15(4), 2014
PMID: 24678673
Rubredoxin-related maturation factor guarantees metal cofactor integrity during aerobic biosynthesis of membrane-bound [NiFe] hydrogenase.
Fritsch J, Siebert E, Priebe J, Zebger I, Lendzian F, Teutloff C, Friedrich B, Lenz O., J Biol Chem 289(11), 2014
PMID: 24448806
Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-D-maltoside using small-angle neutron scattering and molecular dynamics simulation.
Le RK, Harris BJ, Iwuchukwu IJ, Bruce BD, Cheng X, Qian S, Heller WT, O'Neill H, Frymier PD., Arch Biochem Biophys 550-551(), 2014
PMID: 24769336
Solid-state biophotovoltaic cells containing photosystem I.
Gordiichuk PI, Wetzelaer GJ, Rimmerman D, Gruszka A, de Vries JW, Saller M, Gautier DA, Catarci S, Pesce D, Richter S, Blom PW, Herrmann A., Adv Mater 26(28), 2014
PMID: 24862686
Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.
Hartmann V, Kothe T, Pöller S, El-Mohsnawy E, Nowaczyk MM, Plumeré N, Schuhmann W, Rögner M., Phys Chem Chem Phys 16(24), 2014
PMID: 24647437
Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding.
Vedha SA, Solomon RV, Venuvanalingam P., Phys Chem Chem Phys 16(22), 2014
PMID: 24756140
Photosynthesis at the forefront of a sustainable life.
Janssen PJ, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G., Front Chem 2(), 2014
PMID: 24971306
Effect of surfactants on apparent oxygen consumption of photosystem I isolated from Arthrospira platensis.
Yu D, Huang G, Xu F, Ge B, Liu S, Xu H, Huang F., Photosynth Res 122(2), 2014
PMID: 24947956
Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002: evidence for light-driven biosynthesis.
Lassen LM, Nielsen AZ, Olsen CE, Bialek W, Jensen K, Møller BL, Jensen PE., PLoS One 9(7), 2014
PMID: 25025215
Two-dimensional protein crystals for solar energy conversion.
Saboe PO, Lubner CE, McCool NS, Vargas-Barbosa NM, Yan H, Chan S, Ferlez B, Bazan GC, Golbeck JH, Kumar M., Adv Mater 26(41), 2014
PMID: 25155990
Structure, function and biosynthesis of O₂-tolerant hydrogenases.
Fritsch J, Lenz O, Friedrich B., Nat Rev Microbiol 11(2), 2013
PMID: 23321533
[NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions.
Shafaat HS, Rüdiger O, Ogata H, Lubitz W., Biochim Biophys Acta 1827(8-9), 2013
PMID: 23399489
Engineering Cellular Photocomposite Materials Using Convective Assembly.
Jenkins JS, Flickinger MC, Velev OD., Materials (Basel) 6(5), 2013
PMID: 28809244
Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
Ataka K, Stripp ST, Heberle J., Biochim Biophys Acta 1828(10), 2013
PMID: 23816441
Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation.
Kato M, Cardona T, Rutherford AW, Reisner E., J Am Chem Soc 135(29), 2013
PMID: 23829513
Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin.
Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D., Phys Chem Chem Phys 15(45), 2013
PMID: 24129892
Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis.
Kim JH, Lee M, Lee JS, Park CB., Angew Chem Int Ed Engl 51(2), 2012
PMID: 21976303
Maximizing reductant flow into microbial H2 production.
Kontur WS, Noguera DR, Donohue TJ., Curr Opin Biotechnol 23(3), 2012
PMID: 22036711
Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.
Chandrayan SK, McTernan PM, Hopkins RC, Sun J, Jenney FE, Adams MW., J Biol Chem 287(5), 2012
PMID: 22157005
Artificial photosynthesis for solar fuels.
Styring S., Faraday Discuss 155(), 2012
PMID: 22470985
Light-driven chemical synthesis.
Jensen K, Jensen PE, Møller BL., Trends Plant Sci 17(2), 2012
PMID: 22306522
Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies.
Sezer M, Millo D, Weidinger IM, Zebger I, Hildebrandt P., IUBMB Life 64(6), 2012
PMID: 22535701
Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies.
Greene BL, Joseph CA, Maroney MJ, Dyer RB., J Am Chem Soc 134(27), 2012
PMID: 22716776
In vitro hydrogen production--using energy from the sun.
Krassen H, Ott S, Heberle J., Phys Chem Chem Phys 13(1), 2011
PMID: 21103567
Oxygen-tolerant hydrogenases in hydrogen-based technologies.
Friedrich B, Fritsch J, Lenz O., Curr Opin Biotechnol 22(3), 2011
PMID: 21334190
A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase.
Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O., Nat Chem Biol 7(5), 2011
PMID: 21390036
Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis.
Kim JH, Lee SH, Lee JS, Lee M, Park CB., Chem Commun (Camb) 47(37), 2011
PMID: 21748164
Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells.
Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V., Photochem Photobiol 87(5), 2011
PMID: 21740444
Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion.
Yamada Y, Miyahigashi T, Kotani H, Ohkubo K, Fukuzumi S., J Am Chem Soc 133(40), 2011
PMID: 21875112
O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase.
Lambertz C, Leidel N, Havelius KG, Noth J, Chernev P, Winkler M, Happe T, Haumann M., J Biol Chem 286(47), 2011
PMID: 21930709
Electron transport between photosystem II and photosystem I encapsulated in sol-gel glasses.
Kopnov F, Cohen-Ofri I, Noy D., Angew Chem Int Ed Engl 50(51), 2011
PMID: 22021192
H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.
Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B., Chemphyschem 11(6), 2010
PMID: 20186906
Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems.
Ataka K, Kottke T, Heberle J., Angew Chem Int Ed Engl 49(32), 2010
PMID: 20818765
High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli.
Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR., PLoS One 5(11), 2010
PMID: 21124800
Fluorescence studies into the effect of plasmonic interactions on protein function.
Nieder JB, Bittl R, Brecht M., Angew Chem Int Ed Engl 49(52), 2010
PMID: 21117103

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19947646
PubMed | Europe PMC

Suchen in

Google Scholar