Influenza-Insights from Mathematical Modelling

Mikolajczyk R, Krumkamp R, Bornemann R, Ahmad A, Schwehm M, Duerr H (2009)
DEUTSCHES ARZTEBLATT INTERNATIONAL 106(47): 777-U19.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mikolajczyk, R.; Krumkamp, R.; Bornemann, ReinhardUniBi; Ahmad, A.; Schwehm, M.; Duerr, H.
Abstract / Bemerkung
Background: When the first cases of a new infectious disease appear, questions arise about the further course of the epidemic and about the appropriate interventions to be taken to protect individuals and the public as a whole. Mathematical models can help answer these questions. In this article, the authors describe basic concepts in the mathematical modelling of infectious diseases, illustrate their use with a simple example, and present the results of influenza models. Method: Description of the mathematical modelling of infectious diseases and selective review of the literature. Results: The two fundamental concepts of mathematical modelling of infectious diseases-the basic reproduction number and the generation time-allow a better understanding of the course of an epidemic. Modelling studies based on past influenza epidemics suggest that the rise of the epidemic curve can be slowed at the beginning of the epidemic by isolating ill persons and giving prophylactic medications to their contacts. Later on in the course of the epidemic, restricting the number of contacts (e.g., by closing schools) may mitigate the epidemic but will only have a limited effect on the total number of persons who contract the disease. Conclusion: Mathematical modelling is a valuable tool for understanding the dynamics of an epidemic and for planning and evaluating interventions.
Stichworte
epidemic; influenza; disease course; prevention; infection control
Erscheinungsjahr
2009
Zeitschriftentitel
DEUTSCHES ARZTEBLATT INTERNATIONAL
Band
106
Ausgabe
47
Seite(n)
777-U19
ISSN
1866-0452
Page URI
https://pub.uni-bielefeld.de/record/1588972

Zitieren

Mikolajczyk R, Krumkamp R, Bornemann R, Ahmad A, Schwehm M, Duerr H. Influenza-Insights from Mathematical Modelling. DEUTSCHES ARZTEBLATT INTERNATIONAL. 2009;106(47):777-U19.
Mikolajczyk, R., Krumkamp, R., Bornemann, R., Ahmad, A., Schwehm, M., & Duerr, H. (2009). Influenza-Insights from Mathematical Modelling. DEUTSCHES ARZTEBLATT INTERNATIONAL, 106(47), 777-U19. https://doi.org/10.3238/arztebl.2009.0777
Mikolajczyk, R., Krumkamp, R., Bornemann, Reinhard, Ahmad, A., Schwehm, M., and Duerr, H. 2009. “Influenza-Insights from Mathematical Modelling”. DEUTSCHES ARZTEBLATT INTERNATIONAL 106 (47): 777-U19.
Mikolajczyk, R., Krumkamp, R., Bornemann, R., Ahmad, A., Schwehm, M., and Duerr, H. (2009). Influenza-Insights from Mathematical Modelling. DEUTSCHES ARZTEBLATT INTERNATIONAL 106, 777-U19.
Mikolajczyk, R., et al., 2009. Influenza-Insights from Mathematical Modelling. DEUTSCHES ARZTEBLATT INTERNATIONAL, 106(47), p 777-U19.
R. Mikolajczyk, et al., “Influenza-Insights from Mathematical Modelling”, DEUTSCHES ARZTEBLATT INTERNATIONAL, vol. 106, 2009, pp. 777-U19.
Mikolajczyk, R., Krumkamp, R., Bornemann, R., Ahmad, A., Schwehm, M., Duerr, H.: Influenza-Insights from Mathematical Modelling. DEUTSCHES ARZTEBLATT INTERNATIONAL. 106, 777-U19 (2009).
Mikolajczyk, R., Krumkamp, R., Bornemann, Reinhard, Ahmad, A., Schwehm, M., and Duerr, H. “Influenza-Insights from Mathematical Modelling”. DEUTSCHES ARZTEBLATT INTERNATIONAL 106.47 (2009): 777-U19.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Mathematical Analysis of Influenza A Dynamics in the Emergence of Drug Resistance.
Kanyiri CW, Mark K, Luboobi L., Comput Math Methods Med 2018(), 2018
PMID: 30245737
Transmissibility of the Influenza Virus during Influenza Outbreaks and Related Asymptomatic Infection in Mainland China, 2005-2013.
Chen T, Chen T, Liu R, Xu C, Wang D, Chen F, Zhu W, Zhang X, Yang J, Wang L, Xie Z, Chen Y, Bai T, Li Y, Wang Z, Zhang M, Chen S, Shu Y., PLoS One 11(11), 2016
PMID: 27880774
Effectiveness of travel restrictions in the rapid containment of human influenza: a systematic review.
Mateus AL, Otete HE, Beck CR, Dolan GP, Nguyen-Van-Tam JS., Bull World Health Organ 92(12), 2014
PMID: 25552771
Correspondence (letter to the editor): Basic reproduction number.
Wedig MP., Dtsch Arztebl Int 107(15), 2010
PMID: 20458370

30 References

Daten bereitgestellt von Europe PubMed Central.

Evidenzbasierte Public Health bei Influenzapandemieplanung
Bornemann R., 2009
Managing and reducing uncertainty in an emerging influenza pandemic.
Lipsitch M, Riley S, Cauchemez S, Ghani AC, Ferguson NM., N. Engl. J. Med. 361(2), 2009
PMID: 19474417
Factors that make an infectious disease outbreak controllable.
Fraser C, Riley S, Anderson RM, Ferguson NM., Proc. Natl. Acad. Sci. U.S.A. 101(16), 2004
PMID: 15071187
Real time bayesian estimation of the epidemic potential of emerging infectious diseases
Bettencourt LM, Ribeiro RM., 2008
A novel approach to real-time risk prediction for emerging infectious diseases: a case study in Avian Influenza H5N1.
Jewell CP, Kypraios T, Christley RM, Roberts GO., Prev. Vet. Med. 91(1), 2009
PMID: 19535161
Time lines of infection and disease in human influenza: a review of volunteer challenge studies.
Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ., Am. J. Epidemiol. 167(7), 2008
PMID: 18230677
Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan
Nishiura H, Castillo-Chavez C, Safan M, Chowell G., 2009
A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009
Boelle PY, Bernillon P, Desenclos JC., 2009
Pandemic potential of a strain of influenza A (H1N1): early findings.
Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C; WHO Rapid Pandemic Assessment Collaboration., Science 324(5934), 2009
PMID: 19433588
Möglicher Verlauf einer Epidemie durch das Neue Influenzavirus A/H1N1 in Deutschland und Auswirkungen präventiver Maßnahmen des Öffentlichen Gesundheitsdienstes
an M., 2009
The influenza pandemic preparedness planning tool InfluSim
Eichner M, Schwehm M, Duerr HP, Brockmann SO., 2007
Effects of interventions on the demand for hospital services in an influenza pandemic: a sensitivity analysis.
Vidondo B, Oberreich J, Brockmann SO, Duerr HP, Schwehm M, Eichner M., Swiss Med Wkly 139(35-36), 2009
PMID: 19675954
Antiviral prophylaxis dur-ing pandemic influenza may increase drug resistance
Eichner M, Schwehm M, Duerr HP., 2009
Modelling the effects of drug resistant influenza virus in a pandemic
Brockmann SO, Schwehm M, Duerr HP., 2008
Delaying the international spread of pandemic influenza
Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ., 2006
Entry screening for severe acute respiratory syndrome (SARS) or influenza: policy evaluation.
Pitman RJ, Cooper BS, Trotter CL, Gay NJ, Edmunds WJ., BMJ 331(7527), 2005
PMID: 16176938
Non-pharmaceutical interventions for pandemic influenza, national and community measures.
World Health Organization Writing Group, Bell D, Nicoll A, Fukuda K, Horby P, Monto A, Hayden F, Wylks C, Sanders L, van Tam J., Emerging Infect. Dis. 12(1), 2006
PMID: 16494723
Quarantine for pandemic influenza control at the borders of small island nations
Nishiura H, Wilson N, Baker MG., 2009
The effectiveness of contact tracing in emerging epidemics
Klinkenberg D, Fraser C, Heesterbeek H., 2006
Social contacts and mixing patterns relevant to the spread of infectious diseases
Mossong J, Hens N, Jit M., 2008
Social contacts of school children and the transmission of respiratory-spread pathogens.
Mikolajczyk RT, Akmatov MK, Rastin S, Kretzschmar M., Epidemiol. Infect. 136(6), 2007
PMID: 17634160
Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases
Kretzschmar M, Mikolajczyk RT., 2009
Mitigation strategies for pandemic influenza in the United States.
Germann TC, Kadau K, Longini IM Jr, Macken CA., Proc. Natl. Acad. Sci. U.S.A. 103(15), 2006
PMID: 16585506
Strategies for mitigating an influenza pandemic.
Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS., Nature 442(7101), 2006
PMID: 16642006
Estimating the impact of school closure on influenza transmission from Sentinel data.
Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM., Nature 452(7188), 2008
PMID: 18401408
Containing pandemic influenza with antiviral agents.
Longini IM Jr, Halloran ME, Nizam A, Yang Y., Am. J. Epidemiol. 159(7), 2004
PMID: 15033640
Potential impact of antiviral drug use during influenza pandemic.
Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S., Emerging Infect. Dis. 11(9), 2005
PMID: 16229762
Antiviral resistance and the control of pandemic influenza
Lipsitch M, Cohen T, Murray M, Levin BR., 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20019862
PubMed | Europe PMC

Suchen in

Google Scholar