Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus)

Steinfartz S, Glaberman S, Lanterbecq D, Russello MA, Rosa S, Hanley TC, Marquez C, Snell HL, Snell HM, Gentile G, Dell'Olmo G, et al. (2009)
BMC Evolutionary biology 9(1): 297.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Background: Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galapagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. Results: CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristobal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. Conclusions: While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear ( but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do not support this view. Therefore, our study is a nice example of how recently developed analytical tools such as Bayesian clustering analysis and DNA sequence-based demographic analyses can overcome potential biases introduced by simply relying on FST estimates from markers with different inheritance patterns.
Erscheinungsjahr
Zeitschriftentitel
BMC Evolutionary biology
Band
9
Zeitschriftennummer
1
Seite
297
ISSN
PUB-ID

Zitieren

Steinfartz S, Glaberman S, Lanterbecq D, et al. Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary biology. 2009;9(1):297.
Steinfartz, S., Glaberman, S., Lanterbecq, D., Russello, M. A., Rosa, S., Hanley, T. C., Marquez, C., et al. (2009). Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary biology, 9(1), 297. doi:10.1186/1471-2148-9-297
Steinfartz, S., Glaberman, S., Lanterbecq, D., Russello, M. A., Rosa, S., Hanley, T. C., Marquez, C., Snell, H. L., Snell, H. M., Gentile, G., et al. (2009). Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary biology 9, 297.
Steinfartz, S., et al., 2009. Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary biology, 9(1), p 297.
S. Steinfartz, et al., “Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus)”, BMC Evolutionary biology, vol. 9, 2009, pp. 297.
Steinfartz, S., Glaberman, S., Lanterbecq, D., Russello, M.A., Rosa, S., Hanley, T.C., Marquez, C., Snell, H.L., Snell, H.M., Gentile, G., Dell'Olmo, G., Powell, A.M., Caccone, A.: Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus). BMC Evolutionary biology. 9, 297 (2009).
Steinfartz, Sebastian, Glaberman, Scott, Lanterbecq, Deborah, Russello, Michael A., Rosa, Sabrina, Hanley, Torrance C., Marquez, Cruz, Snell, Howard L., Snell, Heidi M., Gentile, Gabriele, Dell'Olmo, Giacomo, Powell, Alessandro M., and Caccone, Adalgisa. “Progressive colonization and restricted gene flow shape island-dependent population structure in Galapagos marine iguanas (Amblyrhynchus cristatus)”. BMC Evolutionary biology 9.1 (2009): 297.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The complete mitochondrial genomes of the Galápagos iguanas, Amblyrhynchus cristatus and Conolophus subcristatus.
MacLeod A, Irisarri I, Vences M, Steinfartz S., Mitochondrial DNA A DNA Mapp Seq Anal 27(5), 2016
PMID: 26357924
Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).
Chiari Y, Glaberman S, Tarroso P, Caccone A, Claude J., Oecologia 181(3), 2016
PMID: 27041683
Cryptic diversity in Black rats Rattus rattus of the Galápagos Islands, Ecuador.
Willows-Munro S, Dowler RC, Jarcho MR, Phillips RB, Snell HL, Wilbert TR, Edwards CW., Ecol Evol 6(11), 2016
PMID: 27231528
Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.
MacLeod A, Rodríguez A, Vences M, Orozco-terWengel P, García C, Trillmich F, Gentile G, Caccone A, Quezada G, Steinfartz S., Proc Biol Sci 282(1809), 2015
PMID: 26041359
Lineage fusion in Galápagos giant tortoises.
Garrick RC, Benavides E, Russello MA, Hyseni C, Edwards DL, Gibbs JP, Tapia W, Ciofi C, Caccone A., Mol Ecol 23(21), 2014
PMID: 25223395
Genetic differentiation between marine iguanas from different breeding sites on the island of Santa Fe (Galapagos Archipelago).
Lanterbecq D, Glaberman S, Vitousek MN, Steinfartz S, Benavides E, Wikelski M, Caccone A., J Hered 101(6), 2010
PMID: 20538757

93 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 2008
Colonization and diversification of Galapagos terrestrial fauna: a phylogenetic and biogeographical synthesis.
Parent CE, Caccone A, Petren K., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363(1508), 2008
PMID: 18782729
Ages of the Galápagos Islands
AUTHOR UNKNOWN, 1983
The origin and diversification of Galapagos mockingbirds.
Arbogast BS, Drovetski SV, Curry RL, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ., Evolution 60(2), 2006
PMID: 16610327
Phylogeography of the Galapagos hawk (Buteo galapagoensis): a recent arrival to the Galapagos Islands.
Bollmer JL, Kimball RT, Whiteman NK, Sarasola JH, Parker PG., Mol. Phylogenet. Evol. 39(1), 2006
PMID: 16376110
Origin and evolutionary relationships of giant Galapagos tortoises.
Caccone A, Gibbs JP, Ketmaier V, Suatoni E, Powell JR., Proc. Natl. Acad. Sci. U.S.A. 96(23), 1999
PMID: 10557302
Phylogeny of Darwin's finches as revealed by mtDNA sequences.
Sato A, O'hUigin C, Figueroa F, Grant PR, Grant BR, Tichy H, Klein J., Proc. Natl. Acad. Sci. U.S.A. 96(9), 1999
PMID: 10220425
Colonization history, ecological shifts and diversification in the evolution of endemic Galapagos weevils.
Sequeira AS, Lanteri AA, Albelo LR, Bhattacharya S, Sijapati M., Mol. Ecol. 17(4), 2008
PMID: 18261050
Evolution of Galapagos Island Lava Lizards (Iguania: Tropiduridae: Microlophus).
Kizirian D, Trager A, Donnelly MA, Wright JW., Mol. Phylogenet. Evol. 32(3), 2004
PMID: 15288053
The evolution and biogeography of the lizards of the Galápagos archipelago: evolutionary genetics of Phyllodactylus and Tropidurus populations
AUTHOR UNKNOWN, 1983
Cryptic biodiversity in a changing world.
Beheregaray LB, Caccone A., J. Biol. 6(4), 2007
PMID: 18177504
On the emergence and submergence of the Galápagos islands
AUTHOR UNKNOWN, 1996
Petrology and Geochemistry of the Galápagos-Islands - Portrait of a Pathological Mantle Plume
AUTHOR UNKNOWN, 1993

AUTHOR UNKNOWN, 1995
An ecological study of the Galápagos marine iguana
AUTHOR UNKNOWN, 1983
Foraging Strategies of the marine iguana, Amblyrhynchus cristatus
AUTHOR UNKNOWN, 1986
Phylogenetic systematics of Iguanine lizards: a comparitive osteological study
AUTHOR UNKNOWN, 1987
Are the Galápagos iguanas older than the Galápagos?
AUTHOR UNKNOWN, 1983
Drowned Islands Downstream from the Galápagos Hotspot Imply Extended Speciation Times
AUTHOR UNKNOWN, 1992
Drowned 14-m.y.-old Galápagos archipelago off the coast of Costa Rica: Implications for tectonic and evolutionary models
AUTHOR UNKNOWN, 1999
The microevolution of the Galápagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analyses
AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 2005
Genetic impact of a severe El Nino event on Galapagos marine iguanas (Amblyrhynchus cristatus).
Steinfartz S, Glaberman S, Lanterbecq D, Marquez C, Rassmann K, Caccone A., PLoS ONE 2(12), 2007
PMID: 18074011
Development of primers to characterize the mitochondrial control region of Galápagos land and marine iguanas (Conolophus and Amblyrhynchus)
AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 0
DnaSP, DNA polymorphism analyses by the coalescent and other methods.
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R., Bioinformatics 19(18), 2003
PMID: 14668244
MrModeltest v2
AUTHOR UNKNOWN, 2004
MODELTEST: testing the model of DNA substitution.
Posada D, Crandall KA., Bioinformatics 14(9), 1998
PMID: 9918953
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.
Hasegawa M, Kishino H, Yano T., J. Mol. Evol. 22(2), 1985
PMID: 3934395
MrBayes 3: Bayesian phylogenetic inference under mixed models.
Ronquist F, Huelsenbeck JP., Bioinformatics 19(12), 2003
PMID: 12912839
BEAST: Bayesian evolutionary analysis by sampling trees.
Drummond AJ, Rambaut A., BMC Evol. Biol. 7(), 2007
PMID: 17996036
Tracer v1.4
AUTHOR UNKNOWN, 2007
The Genetical Structure of Populations
AUTHOR UNKNOWN, 1951
Arlequin 2000 A software for population genetics data analysis. Version 2.000
AUTHOR UNKNOWN, 2000
Inference of population structure using multilocus genotype data.
Pritchard JK, Stephens M, Donnelly P., Genetics 155(2), 2000
PMID: 10835412
DISTRUCT: a program for the graphical display of population structure
AUTHOR UNKNOWN, 2004
Bayesian analysis of genetic differentiation between populations.
Corander J, Waldmann P, Sillanpaa MJ., Genetics 163(1), 2003
PMID: 12586722
GENECLASS2: a software for genetic assignment and first-generation migrant detection.
Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A., J. Hered. 95(6), 2004
PMID: 15475402
Detecting immigration by using multilocus genotypes.
Rannala B, Mountain JL., Proc. Natl. Acad. Sci. U.S.A. 94(17), 1997
PMID: 9256459
Estimation of the coancestry coefficient: basis for a short-term genetic distance.
Reynolds J, Weir BS, Cockerham CC., Genetics 105(3), 1983
PMID: 17246175

AUTHOR UNKNOWN, 1995
Genetic evidence for a Paleolithic human population expansion in Africa.
Reich DE, Goldstein DB., Proc. Natl. Acad. Sci. U.S.A. 95(14), 1998
PMID: 9653150
Statistical Properties of Two Tests that Use Multilocus Data Sets to Detect Population Expansions
AUTHOR UNKNOWN, 1999
Tests for sex-biased dispersal using bi-parentally inherited genetic markers.
Goudet J, Perrin N, Waser P., Mol. Ecol. 11(6), 2002
PMID: 12030985
Microsatellite analysis of population structure in Canadian polar bears.
Paetkau D, Calvert W, Stirling I, Strobeck C., Mol. Ecol. 4(3), 1995
PMID: 7663752
FSTAT (version 1.2): A computer program to calculate F-statistics
AUTHOR UNKNOWN, 1995
Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Galapagos.
Beheregaray LB, Gibbs JP, Havill N, Fritts TH, Powell JR, Caccone A., Proc. Natl. Acad. Sci. U.S.A. 101(17), 2004
PMID: 15084743
Phylogeographic history and gene flow among giant Galapagos tortoises on southern Isabela Island.
Ciofi C, Wilson GA, Beheregaray LB, Marquez C, Gibbs JP, Tapia W, Snell HL, Caccone A, Powell JR., Genetics 172(3), 2005
PMID: 16387883
Evolution of Galapagos Island Lava Lizards (Iguania: Tropiduridae: Microlophus).
Kizirian D, Trager A, Donnelly MA, Wright JW., Mol. Phylogenet. Evol. 32(3), 2004
PMID: 15288053
Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus).
Tzika AC, Koenig S, Miller R, Garcia G, Remy C, Milinkovitch MC., Mol. Ecol. 17(2), 2007
PMID: 18179440
An overlooked pink species of land iguana in the Galapagos.
Gentile G, Fabiani A, Marquez C, Snell HL, Snell HM, Tapia W, Sbordoni V., Proc. Natl. Acad. Sci. U.S.A. 106(2), 2009
PMID: 19124773
Tracing early stages of species differentiation: ecological, morphological and genetic divergence of Galapagos sea lion populations.
Wolf JB, Harrod C, Brunner S, Salazar S, Trillmich F, Tautz D., BMC Evol. Biol. 8(), 2008
PMID: 18485220
Phylogeography of the Galapagos hawk (Buteo galapagoensis): a recent arrival to the Galapagos Islands.
Bollmer JL, Kimball RT, Whiteman NK, Sarasola JH, Parker PG., Mol. Phylogenet. Evol. 39(1), 2006
PMID: 16376110
The marine iguana of the Galápagos islands, its behavior and ecology
AUTHOR UNKNOWN, 1966
Foraging Strategies of the Galápagos Marine Iguana (Amblyrhynchus cristatus): Adapting Behavioral Rules to Ontogenic Size Change
AUTHOR UNKNOWN, 1994
Circulation and Water Masses in Eastern Equatorial Pacific Ocean
AUTHOR UNKNOWN, 1967
Beyond F-ST: Analysis of population genetic data for conservation
AUTHOR UNKNOWN, 2004
Fine-scale genetic structuring in Corallium rubrum (L.): evidences of inbreeding and limited effective larval dispersal
AUTHOR UNKNOWN, 2007
The mating system of the marine iguana (Amblyrhynchus cristatus)
AUTHOR UNKNOWN, 1983
Conservation of Galápagos marine iguanas (Amblyrhynchus cristatus)
AUTHOR UNKNOWN, 2004
An ecological and behavioral study of the Galápagos Penguin
AUTHOR UNKNOWN, 1977
Population size and trends of the Galápagos Penguin Spheniscus mendiculus
AUTHOR UNKNOWN, 2005
Eruption rates at Fernandina volcano, Galápagos archipelago, from cosmogenic helium surficial laval flows
AUTHOR UNKNOWN, 2005
Genetic variation increases during biological invasion by a Cuban lizard.
Kolbe JJ, Glor RE, Rodriguez Schettino L, Lara AC, Larson A, Losos JB., Nature 431(7005), 2004
PMID: 15356629
Lonesome George is not alone among Galapagos tortoises.
Russello MA, Beheregaray LB, Gibbs JP, Fritts T, Havill N, Powell JR, Caccone A., Curr. Biol. 17(9), 2007
PMID: 17470342
Historical DNA analysis reveals living descendants of an extinct species of Galapagos tortoise.
Poulakakis N, Glaberman S, Russello M, Beheregaray LB, Ciofi C, Powell JR, Caccone A., Proc. Natl. Acad. Sci. U.S.A. 105(40), 2008
PMID: 18809928
The Volcanic Geology and Petrology of Isla Pinta, Galápagos Archipelago
AUTHOR UNKNOWN, 1987
Physical volcanology and structural development of Cerro Azul Volcano, Isabela Island, Galápagos: implications for the development of Galápagos-type shield volcanoes
AUTHOR UNKNOWN, 2000
NUMTs in sequenced eukaryotic genomes.
Richly E, Leister D., Mol. Biol. Evol. 21(6), 2004
PMID: 15014143
The occurrence, detection, and avoidance of mitochondrial DNA translocations in mammalian systematics and phylogeography
AUTHOR UNKNOWN, 2007
Population growth makes waves in the distribution of pairwise genetic differences.
Rogers AR, Harpending H., Mol. Biol. Evol. 9(3), 1992
PMID: 1316531

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20028547
PubMed | Europe PMC

Suchen in

Google Scholar