Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies

Heggemann C, Budke C, Schomburg B, Majer Z, Wißbrock M, Koop T, Sewald N (2010)
Amino Acids 38(1): 213-222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heggemann, Carolin; Budke, CarstenUniBi; Schomburg, Benjamin; Majer, Zsuzsa; Wißbrock, MarcoUniBi; Koop, ThomasUniBi ; Sewald, NorbertUniBi
Abstract / Bemerkung
Antifreeze glycoproteins enable life at temperatures below the freezing point of physiological solutions. They usually consist of the repetitive tripeptide unit (-Ala-Ala-Thr-) with the disaccharide alpha-D-galactosyl(1-3)-beta-N-acetyl-D-galactosamine attached to each hydroxyl group of threonine. Monoglycosylated analogues have been synthesized from the corresponding monoglycosylated threonine building block by microwave-assisted solid phase peptide synthesis. This method allows the preparation of analogues containing sequence variations which are not accessible by other synthetic methods. As antifreeze glycoproteins consist of numerous isoforms they are difficult to obtain in pure form from natural sources. The synthetic peptides have been structurally analyzed by CD and NMR spectroscopy in proton exchange experiments revealing a structure as flexible as reported for the native peptides. Microphysical recrystallization tests show an ice structuring influence and ice growth inhibition depending on the concentration, chain length and sequence of the peptides.
Stichworte
Circular dichroism; Glycopeptides; Microwave synthesis; Bioorganic chemistry; Recrystallization
Erscheinungsjahr
2010
Zeitschriftentitel
Amino Acids
Band
38
Ausgabe
1
Seite(n)
213-222
ISSN
0939-4451
eISSN
1438-2199
Page URI
https://pub.uni-bielefeld.de/record/1588751

Zitieren

Heggemann C, Budke C, Schomburg B, et al. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids. 2010;38(1):213-222.
Heggemann, C., Budke, C., Schomburg, B., Majer, Z., Wißbrock, M., Koop, T., & Sewald, N. (2010). Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids, 38(1), 213-222. https://doi.org/10.1007/s00726-008-0229-0
Heggemann, Carolin, Budke, Carsten, Schomburg, Benjamin, Majer, Zsuzsa, Wißbrock, Marco, Koop, Thomas, and Sewald, Norbert. 2010. “Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies”. Amino Acids 38 (1): 213-222.
Heggemann, C., Budke, C., Schomburg, B., Majer, Z., Wißbrock, M., Koop, T., and Sewald, N. (2010). Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids 38, 213-222.
Heggemann, C., et al., 2010. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids, 38(1), p 213-222.
C. Heggemann, et al., “Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies”, Amino Acids, vol. 38, 2010, pp. 213-222.
Heggemann, C., Budke, C., Schomburg, B., Majer, Z., Wißbrock, M., Koop, T., Sewald, N.: Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids. 38, 213-222 (2010).
Heggemann, Carolin, Budke, Carsten, Schomburg, Benjamin, Majer, Zsuzsa, Wißbrock, Marco, Koop, Thomas, and Sewald, Norbert. “Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies”. Amino Acids 38.1 (2010): 213-222.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP).
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N., Beilstein J Org Chem 15(), 2019
PMID: 31435440
Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
Urbańczyk M, Góra J, Latajka R, Sewald N., Amino Acids 49(2), 2017
PMID: 27913993
Total Synthesis of O-GalNAcylated Antifreeze Glycoprotein using the Switchable Reactivity of Peptidyl-N-pivaloylguanidine.
Orii R, Sakamoto N, Fukami D, Tsuda S, Izumi M, Kajihara Y, Okamoto R., Chemistry 23(39), 2017
PMID: 28516497
Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment.
Martínez-Sáez N, Supekar NT, Wolfert MA, Bermejo IA, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Boons GJ, Peregrina JM, Corzana F., Chem Sci 7(3), 2016
PMID: 29910919
Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules.
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ., Bioorg Med Chem 21(12), 2013
PMID: 23523384
Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology.
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ., Mar Drugs 11(6), 2013
PMID: 23752356
Microwave heating in solid-phase peptide synthesis.
Pedersen SL, Tofteng AP, Malik L, Jensen KJ., Chem Soc Rev 41(5), 2012
PMID: 22012213
Influence of sequential modifications and carbohydrate variations in synthetic AFGP analogues on conformation and antifreeze activity.
Nagel L, Budke C, Erdmann RS, Dreyer A, Wennemers H, Koop T, Sewald N., Chemistry 18(40), 2012
PMID: 22930587
Antifreeze glycopeptide diastereomers.
Nagel L, Budke C, Dreyer A, Koop T, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209499
Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.
Friligou I, Papadimitriou E, Gatos D, Matsoukas J, Tselios T., Amino Acids 40(5), 2011
PMID: 20872260
Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.
Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N., Amino Acids 41(3), 2011
PMID: 21603949
Recent progress in the field of neoglycoconjugate chemistry.
Jiménez-Castells C, Defaus S, Andreu D, Gutiérrez-Gallego R., Biomol Concepts 1(1), 2010
PMID: 25961988
Design and synthesis of antifreeze glycoproteins and mimics.
Garner J, Harding MM., Chembiochem 11(18), 2010
PMID: 21108270

28 References

Daten bereitgestellt von Europe PubMed Central.


RS, 1996
Antifreeze glycoproteins: structure, conformation, and biological applications.
Bouvet V, Ben RN., Cell Biochem. Biophys. 39(2), 2003
PMID: 14515019

C, Biorg Med Chem 10(), 2002

CA, Int J Peptide Protein Res 17(), 1981

PL, Philos Trans R Soc London Ser B 357(), 2002
Freezing resistance in some Antarctic fishes.
DeVries AL, Wohlschlag DE., Science 163(3871), 1969
PMID: 5764871
Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes.
DeVries AL, Komatsu SK, Feeney RE., J. Biol. Chem. 245(11), 1970
PMID: 5488456

B, 2000
'Antifreeze' glycoproteins from polar fish.
Harding MM, Anderberg PI, Haymet AD., Eur. J. Biochem. 270(7), 2003
PMID: 12653993
Stereoelectronic effects on polyproline conformation.
Horng JC, Raines RT., Protein Sci. 15(1), 2006
PMID: 16373476
Fish antifreeze protein and the freezing and recrystallization of ice.
Knight CA, DeVries AL, Oolman LD., Nature 308(5956), 1984
PMID: 6700733
Solute effects on ice recrystallization: an assessment technique.
Knight CA, Hallett J, DeVries AL., Cryobiology 25(1), 1988
PMID: 3349811
Nonequilibrium antifreeze peptides and the recrystallization of ice.
Knight CA, Wen D, Laursen RA., Cryobiology 32(1), 1995
PMID: 7697996

RU, Can J Chem 57(), 1979
A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
Li QZ, Yeh Y, Liu JJ, Feeney RE, Krishnan VV., J Chem Phys 124(20), 2006
PMID: 16774359
Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins.
Makowska J, Rodziewicz-Motowidlo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA., Proc. Natl. Acad. Sci. U.S.A. 103(6), 2006
PMID: 16446433
Rapid microwave-assisted solid-phase glycopeptide synthesis.
Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S., Org. Lett. 7(5), 2005
PMID: 15727464

B, Top Curr Chem 267(), 2007
Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin.
Mitchell SA, Pratt MR, Hruby VJ, Polt R., J. Org. Chem. 66(7), 2001
PMID: 11281773
Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
Parody-Morreale A, Murphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ., Nature 333(6175), 1988
PMID: 3386720

H, Liebigs Ann Chem 109(), 1989

A, Biopolymers (Pept Sci) 80(), 2005
Inhibition of growth of nonbasal planes in ice by fish antifreezes.
Raymond JA, Wilson P, DeVries AL., Proc. Natl. Acad. Sci. U.S.A. 86(3), 1989
PMID: 2915983

M, Tetrahedron Ass 4(), 1993
Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity.
Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S., Angew. Chem. Int. Ed. Engl. 43(7), 2004
PMID: 14767958
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19165574
PubMed | Europe PMC

Suchen in

Google Scholar