Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

Daidone I, Neuweiler H, Doose S, Sauer M, Smith JC (2010)
PLOS COMPUTATIONAL BIOLOGY 6(1): e1000645.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Daidone, Isabella; Neuweiler, Hannes; Doose, Soeren; Sauer, MarkusUniBi; Smith, Jeremy C.
Abstract / Bemerkung
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.
Erscheinungsjahr
2010
Zeitschriftentitel
PLOS COMPUTATIONAL BIOLOGY
Band
6
Ausgabe
1
Art.-Nr.
e1000645
ISSN
1553-7358
eISSN
1553-7358
Page URI
https://pub.uni-bielefeld.de/record/1588590

Zitieren

Daidone I, Neuweiler H, Doose S, Sauer M, Smith JC. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY. 2010;6(1): e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., & Smith, J. C. (2010). Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY, 6(1), e1000645. https://doi.org/10.1371/journal.pcbi.1000645
Daidone, Isabella, Neuweiler, Hannes, Doose, Soeren, Sauer, Markus, and Smith, Jeremy C. 2010. “Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains”. PLOS COMPUTATIONAL BIOLOGY 6 (1): e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., and Smith, J. C. (2010). Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY 6:e1000645.
Daidone, I., et al., 2010. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY, 6(1): e1000645.
I. Daidone, et al., “Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains”, PLOS COMPUTATIONAL BIOLOGY, vol. 6, 2010, : e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., Smith, J.C.: Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY. 6, : e1000645 (2010).
Daidone, Isabella, Neuweiler, Hannes, Doose, Soeren, Sauer, Markus, and Smith, Jeremy C. “Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains”. PLOS COMPUTATIONAL BIOLOGY 6.1 (2010): e1000645.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Covalent dye attachment influences the dynamics and conformational properties of flexible peptides.
Luitz MP, Barth A, Crevenna AH, Bomblies R, Lamb DC, Zacharias M., PLoS One 12(5), 2017
PMID: 28542243
Hydrophobic-hydrophilic forces in protein folding.
Durell SR, Ben-Naim A., Biopolymers 107(8), 2017
PMID: 28387920
Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism.
Schulze A, Beliu G, Helmerich DA, Schubert J, Pearl LH, Prodromou C, Neuweiler H., Nat Chem Biol 12(8), 2016
PMID: 27322067
The roughness of the protein energy landscape results in anomalous diffusion of the polypeptide backbone.
Volk M, Milanesi L, Waltho JP, Hunter CA, Beddard GS., Phys Chem Chem Phys 17(2), 2015
PMID: 25412176
Force field-dependent solution properties of glycine oligomers.
Drake JA, Pettitt BM., J Comput Chem 36(17), 2015
PMID: 25952623
β-Structure within the Denatured State of the Helical Protein Domain BBL.
Thukral L, Schwarze S, Daidone I, Neuweiler H., J Mol Biol 427(19), 2015
PMID: 26281710
Polypeptide chain collapse and protein folding.
Udgaonkar JB., Arch Biochem Biophys 531(1-2), 2013
PMID: 23085151
Identification of slow molecular order parameters for Markov model construction.
Pérez-Hernández G, Paul F, Giorgino T, De Fabritiis G, Noé F., J Chem Phys 139(1), 2013
PMID: 23822324
Backbone-driven collapse in unfolded protein chains.
Teufel DP, Johnson CM, Lum JK, Neuweiler H., J Mol Biol 409(2), 2011
PMID: 21497607
Dimer formation of organic fluorophores reports on biomolecular dynamics under denaturing conditions.
Bollmann S, Löllmann M, Sauer M, Doose S., Phys Chem Chem Phys 13(28), 2011
PMID: 21687885
Contemporary strategies for peptide macrocyclization.
White CJ, Yudin AK., Nat Chem 3(7), 2011
PMID: 21697871
Conformational flexibility of glycosylated peptides.
Bollmann S, Burgert A, Plattner C, Nagel L, Sewald N, Löllmann M, Sauer M, Doose S., Chemphyschem 12(16), 2011
PMID: 21922630

70 References

Daten bereitgestellt von Europe PubMed Central.

The protein folding 'speed limit'.
Kubelka J, Hofrichter J, Eaton WA., Curr. Opin. Struct. Biol. 14(1), 2004
PMID: 15102453
The burst phase in ribonuclease A folding and solvent dependence of the unfolded state.
Qi PX, Sosnick TR, Englander SW., Nat. Struct. Biol. 5(10), 1998
PMID: 9783747
A new perspective on unfolded proteins.
Baldwin RL., 2002
Native-like mean structure in the unfolded ensemble of small proteins.
Zagrovic B, Snow CD, Khaliq S, Shirts MR, Pande VS., J. Mol. Biol. 323(1), 2002
PMID: 12368107
Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins.
Laurence TA, Kong X, Jager M, Weiss S., Proc. Natl. Acad. Sci. U.S.A. 102(48), 2005
PMID: 16287971
Coil-globule transition in the denatured state of a small protein.
Sherman E, Haran G., Proc. Natl. Acad. Sci. U.S.A. 103(31), 2006
PMID: 16857738
Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions.
Crick SL, Jayaraman M, Frieden C, Wetzel R, Pappu RV., Proc. Natl. Acad. Sci. U.S.A. 103(45), 2006
PMID: 17075061
A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures.
Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA., Proc. Natl. Acad. Sci. U.S.A. 104(8), 2007
PMID: 17299036
Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy.
Hoffmann A, Kane A, Nettels D, Hertzog DE, Baumgartel P, Lengefeld J, Reichardt G, Horsley DA, Seckler R, Bakajin O, Schuler B., Proc. Natl. Acad. Sci. U.S.A. 104(1), 2006
PMID: 17185422
A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein.
Mok KH, Kuhn LT, Goez M, Day IJ, Lin JC, Andersen NH, Hore PJ., Nature 447(7140), 2007
PMID: 17429353
Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations.
Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA., Proc. Natl. Acad. Sci. U.S.A. 104(5), 2007
PMID: 17251351
How fast is protein hydrophobic collapse?
Sadqi M, Lapidus LJ, Munoz V., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14530404
Is protein folding hierarchic? I. Local structure and peptide folding.
Baldwin RL, Rose GD., Trends Biochem. Sci. 24(1), 1999
PMID: 10087919
Protein folding: the stepwise assembly of foldon units.
Maity H, Maity M, Krishna MM, Mayne L, Englander SW., Proc. Natl. Acad. Sci. U.S.A. 102(13), 2005
PMID: 15774579
A backbone-based theory of protein folding.
Rose GD, Fleming PJ, Banavar JR, Maritan A., Proc. Natl. Acad. Sci. U.S.A. 103(45), 2006
PMID: 17075053
Some factors in the interpretation of protein denaturation.
KAUZMANN W., Adv. Protein Chem. 14(), 1959
PMID: 14404936
Nucleation mechanisms in protein folding.
Fersht AR., Curr. Opin. Struct. Biol. 7(1), 1997
PMID: 9032066
The fundamentals of protein folding: bringing together theory and experiment.
Dobson CM, Karplus M., Curr. Opin. Struct. Biol. 9(1), 1999
PMID: 10047588
Protein folding and unfolding at atomic resolution.
Fersht AR, Daggett V., Cell 108(4), 2002
PMID: 11909527
Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer.
Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ., Proc. Natl. Acad. Sci. U.S.A. 72(5), 1975
PMID: 1057171
The speed limit for protein folding measured by triplet-triplet energy transfer.
Bieri O, Wirz J, Hellrung B, Schutkowski M, Drewello M, Kiefhaber T., Proc. Natl. Acad. Sci. U.S.A. 96(17), 1999
PMID: 10449738
Measuring the rate of intramolecular contact formation in polypeptides.
Lapidus LJ, Eaton WA, Hofrichter J., Proc. Natl. Acad. Sci. U.S.A. 97(13), 2000
PMID: 10860987
Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding.
Krieger F, Fierz B, Bieri O, Drewello M, Kiefhaber T., J. Mol. Biol. 332(1), 2003
PMID: 12946363
Loop formation in unfolded polypeptide chains on the picoseconds to microseconds time scale.
Fierz B, Satzger H, Root C, Gilch P, Zinth W., 2007
Dynamics of unfolded polypeptide chains in crowded environment studied by fluorescence correlation spectroscopy.
Neuweiler H, Lollmann M, Doose S, Sauer M., J. Mol. Biol. 365(3), 2006
PMID: 17084857
First passage time approach to diffusion controlled reactions.
Szabo A, Schulten K, Schulten Z., 1980
The effects of internal constraints on the configurations of chain molecules.
Chan HS, Dill KA., 1990
Rate of intramolecular contact formation in peptides: The loop length dependence.
Wang Z, Makarov DE., 2002
Reassessing random-coil statistics in unfolded proteins.
Fitzkee NC, Rose GD., 2004
Effects of denaturants on the dynamics of loop formation in polypeptides.
Buscaglia M, Lapidus LJ, Eaton WA, Hofrichter J., Biophys. J. 91(1), 2006
PMID: 16617069
Kinetics of internal-loop formation in polypeptide chains: a simulation study.
Doucet D, Roitberg A, Hagen SJ., Biophys. J. 92(7), 2007
PMID: 17208979
Structural and dynamic properties of the CAGQW peptide in water: A molecular dynamics simulation study using different force fields.
Roccatano D, Nau WM, Zacharias M., 2004
Rate of loop formation in peptides: a simulation study.
Feige MJ, Paci E., J. Mol. Biol. 382(2), 2008
PMID: 18644378
A close look at fluorescence quenching of organic dyes by tryptophan.
Doose S, Neuweiler H, Sauer M., Chemphyschem 6(11), 2005
PMID: 16224752
A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate.
Neuweiler H, Doose S, Sauer M., Proc. Natl. Acad. Sci. U.S.A. 102(46), 2005
PMID: 16269542
Theory and simulation. Can theory challenge experiment?
Koehl P, Levitt M., Curr. Opin. Struct. Biol. 9(2), 1999
PMID: 10465610
Peptide folding: when simulation meets experiment.
Daura X, Gademann K, Juan B, Seebach D, van WF., 1999
Understanding protein folding via free-energy surfaces from theory and experiment.
Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M., Trends Biochem. Sci. 25(7), 2000
PMID: 10871884
Folding simulations of a three-stranded antiparallel beta-sheet peptide.
Ferrara P, Caflisch A., 2000
Protein and peptide folding explored with molecular simulations.
Brooks CL 3rd., Acc. Chem. Res. 35(6), 2002
PMID: 12069630
Absolute comparison of simulated and experimental protein-folding dynamics.
Snow CD, Nguyen H, Pande VS, Gruebele M., Nature 420(6911), 2002
PMID: 12422224
Peptide folding simulations.
Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu KY, Garcia AE., Curr. Opin. Struct. Biol. 13(2), 2003
PMID: 12727509
Theoretical characterization of alpha-helix and beta-hairpin folding kinetics.
Daidone I, D'Abramo M, Di Nola A, Amadei A., J. Am. Chem. Soc. 127(42), 2005
PMID: 16231936
Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding.
Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC., Proc. Natl. Acad. Sci. U.S.A. 104(39), 2007
PMID: 17881585

Flory JP., 1989
Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation.
Vaiana AC, Neuweiler H, Schulz A, Wolfrum J, Sauer M, Smith JC., J. Am. Chem. Soc. 125(47), 2003
PMID: 14624606
Diffusion-controlled intrachain reactions of polymers. II Results for a pair of terminal reactive groups.
Wilemski G, Fixman M., 1974
Effect of environment on hydrogen bond dynamics in liquid water.
Luzar A, Chandler D., Phys. Rev. Lett. 76(6), 1996
PMID: 10061587
Polyproline II structure in a sequence of seven alanine residues.
Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 99(14), 2002
PMID: 12091708
Amino and carboxy-terminal regions in globular proteins.
Thornton JM, Sibanda BL., J. Mol. Biol. 167(2), 1983
PMID: 6864804
Implications of N and C-terminal proximity for protein folding.
Christopher JA, Baldwin TO., J. Mol. Biol. 257(1), 1996
PMID: 8632453
The N-terminal to C-terminal motif in protein folding and function.
Krishna MM, Englander SW., Proc. Natl. Acad. Sci. U.S.A. 102(4), 2005
PMID: 15657118
Random-coil behavior and the dimensions of chemically unfolded proteins.
Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW., Proc. Natl. Acad. Sci. U.S.A. 101(34), 2004
PMID: 15314214
GROningen MAchine for Chemical Simulation.
van D, van R, Berendsen HJC., 1994

van WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P., 1996
The missing term in effective pair potentials.
Berendsen HJC, Grigera JR, Straatsma TP., 1987
A comparison of constant energy, constant temperature, and constant pressure ensembles in molecular dynamics simulations of atomic liquids.
Brown D, Clarke JHR., 1984
Lincs: A linear constraint solver for molecular simulations.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM., 1997
Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems.
Darden T, York D, Pedersen L., 1993
Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides.
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL., 2001
Picosecond dynamics of tyrosine side chains in proteins.
McCammon JA, Wolynes PG, Karplus M., Biochemistry 18(6), 1979
PMID: 427100
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20098498
PubMed | Europe PMC

Suchen in

Google Scholar