Bounds for the Perron root using max eigenvalues

Elsner L, van den Driessche P (2008)
Linear Algebra and its Applications 428(8-9): 2000-2005.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Elsner, LudwigUniBi; van den Driessche, Pauline
Abstract / Bemerkung
Using the techniques of max algebra, a new proof of Al'pin's lower and upper bounds for the Perron root of a nonnegative matrix is given. The bounds depend on the row sums of the matrix and its directed graph. If the matrix has zero main diagonal entries, then these bounds may improve the classical row sum bounds. This is illustrated by a generalized tournament matrix. (C) 2007 Elsevier Inc. All rights reserved.
Stichworte
max eigenvalue; irreducibility; nonnegative matrix; Perron root
Erscheinungsjahr
2008
Zeitschriftentitel
Linear Algebra and its Applications
Band
428
Ausgabe
8-9
Seite(n)
2000-2005
ISSN
0024-3795
Page URI
https://pub.uni-bielefeld.de/record/1588421

Zitieren

Elsner L, van den Driessche P. Bounds for the Perron root using max eigenvalues. Linear Algebra and its Applications. 2008;428(8-9):2000-2005.
Elsner, L., & van den Driessche, P. (2008). Bounds for the Perron root using max eigenvalues. Linear Algebra and its Applications, 428(8-9), 2000-2005. doi:10.1016/j.laa.2007.11.014
Elsner, L., and van den Driessche, P. (2008). Bounds for the Perron root using max eigenvalues. Linear Algebra and its Applications 428, 2000-2005.
Elsner, L., & van den Driessche, P., 2008. Bounds for the Perron root using max eigenvalues. Linear Algebra and its Applications, 428(8-9), p 2000-2005.
L. Elsner and P. van den Driessche, “Bounds for the Perron root using max eigenvalues”, Linear Algebra and its Applications, vol. 428, 2008, pp. 2000-2005.
Elsner, L., van den Driessche, P.: Bounds for the Perron root using max eigenvalues. Linear Algebra and its Applications. 428, 2000-2005 (2008).
Elsner, Ludwig, and van den Driessche, Pauline. “Bounds for the Perron root using max eigenvalues”. Linear Algebra and its Applications 428.8-9 (2008): 2000-2005.