Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state

Marino D, Hohnjec N, Küster H, Moran JF, Gonzalez EM, Arrese-Igor C (2008)
MOLECULAR PLANT-MICROBE INTERACTIONS 21(5): 622-630.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
MOLECULAR PLANT-MICROBE INTERACTIONS
Band
21
Ausgabe
5
Seite(n)
622-630
ISSN
PUB-ID

Zitieren

Marino D, Hohnjec N, Küster H, Moran JF, Gonzalez EM, Arrese-Igor C. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS. 2008;21(5):622-630.
Marino, D., Hohnjec, N., Küster, H., Moran, J. F., Gonzalez, E. M., & Arrese-Igor, C. (2008). Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(5), 622-630. doi:10.1094/MPMI-21-5-0622
Marino, D., Hohnjec, N., Küster, H., Moran, J. F., Gonzalez, E. M., and Arrese-Igor, C. (2008). Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS 21, 622-630.
Marino, D., et al., 2008. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(5), p 622-630.
D. Marino, et al., “Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 21, 2008, pp. 622-630.
Marino, D., Hohnjec, N., Küster, H., Moran, J.F., Gonzalez, E.M., Arrese-Igor, C.: Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS. 21, 622-630 (2008).
Marino, Daniel, Hohnjec, Natalija, Küster, Helge, Moran, Jose F., Gonzalez, Esther M., and Arrese-Igor, Cesar. “Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state”. MOLECULAR PLANT-MICROBE INTERACTIONS 21.5 (2008): 622-630.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress.
Chiozzotto R, Ramírez M, Talbi C, Cominelli E, Girard L, Sparvoli F, Hernández G., Genes (Basel) 9(2), 2018
PMID: 29462877
Protein Carbonylation and Glycation in Legume Nodules.
Matamoros MA, Kim A, Peñuelas M, Ihling C, Griesser E, Hoffmann R, Fedorova M, Frolov A, Becana M., Plant Physiol 177(4), 2018
PMID: 29970413
Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
Nasr Esfahani M, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS., Plant J 79(6), 2014
PMID: 24947137
Enhanced expression of Rhizobium etli cbb₃ oxidase improves drought tolerance of common bean symbiotic nitrogen fixation.
Talbi C, Sánchez C, Hidalgo-Garcia A, González EM, Arrese-Igor C, Girard L, Bedmar EJ, Delgado MJ., J Exp Bot 63(14), 2012
PMID: 22511804
Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus.
Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen ZX, Yu JQ., J Zhejiang Univ Sci B 13(10), 2012
PMID: 23024048
Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules.
El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P., New Phytol 192(2), 2011
PMID: 21726232
Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress.
Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R, Moran JF., Mol Plant Microbe Interact 24(10), 2011
PMID: 21774575
The 2-oxoglutarate/malate translocator mediates amino acid and storage protein biosynthesis in pea embryos.
Riebeseel E, Häusler RE, Radchuk R, Meitzel T, Hajirezaei MR, Emery RJ, Küster H, Nunes-Nesi A, Fernie AR, Weschke W, Weber H., Plant J 61(2), 2010
PMID: 19845879
Model legumes contribute to faba bean breeding
Rispail Nicolas, Kaló Péter, Kiss GyörgyB, Ellis THNoel, Gallardo Karine, Thompson RichardD, Prats Elena, Larrainzar Estibaliz, Ladrera Ruben, González EstherM, Arrese-Igor Cesar, Ferguson BrettJ, Gresshoff PeterM, Rubiales Diego., Field Crops Res 115(3), 2010
PMID: IND44316555
Redox changes during the legume-rhizobium symbiosis.
Chang C, Damiani I, Puppo A, Frendo P., Mol Plant 2(3), 2009
PMID: 19825622
Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification.
Krügel U, Veenhoff LM, Langbein J, Wiederhold E, Liesche J, Friedrich T, Grimm B, Martinoia E, Poolman B, Kühn C., Plant Cell 20(9), 2008
PMID: 18790827

63 References

Daten bereitgestellt von Europe PubMed Central.

Oxidative stress occurs during soybean nodule senescence
Evans, Planta 208(1), 1999
In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase.
Komina O, Zhou Y, Sarath G, Chollet R., Plant Physiol. 129(4), 2002
PMID: 12177479
Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction.
Santos R, Herouart D, Sigaud S, Touati D, Puppo A., Mol. Plant Microbe Interact. 14(1), 2001
PMID: 11194876
Oxidative Damage in Pea Plants Exposed to Water Deficit or Paraquat
Iturbe-Ormaetxe, PLANT PHYSIOLOGY 116(1), 1998
Regulation of the Arabidopsis transcriptome by oxidative stress.
Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ., Plant Physiol. 127(1), 2001
PMID: 11553744
Localization of superoxide dismutases and hydrogen peroxide in legume root nodules.
Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M., Mol. Plant Microbe Interact. 17(12), 2004
PMID: 15597735
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.
Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI., Nature 406(6797), 2000
PMID: 10963598
NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+ -dependent isocitrate dehydrogenase.
Marino D, Gonzalez EM, Frendo P, Puppo A, Arrese-Igor C., Planta 225(2), 2006
PMID: 16896792
Sucrose synthase of soybean nodules.
Morell M, Copeland L., Plant Physiol. 78(1), 1985
PMID: 16664189
Enzymes of carbohydrate metabolism in soybean nodules
Copeland, Phytochemistry 28(1), 1989
Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance
Labhilili, Plant Science 112(2), 1995
Regulation of oxygen diffusion in legume nodules.
Minchin FR., Soil Biol. Biochem. 29(5/6), 1997
PMID: IND20623393
Reactive oxygen species and antioxidants in legume nodules
Becana, Physiologia Plantarum 109(4), 2000
Mutations at therug4locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase
Craig, The Plant Journal 17(4), 1999
Sucrose transport into developing seeds of Pisum sativum L.
Tegeder M, Wang XD, Frommer WB, Offler CE, Patrick JW., Plant J. 18(2), 1999
PMID: 10363367
Cadmium causes the oxidative modification of proteins in pea plants
Romero-Puertas, Plant Cell & Environment 25(5), 2002
The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f.
Brandes HK, Larimer FW, Hartman FC., J. Biol. Chem. 271(7), 1996
PMID: 8631927
Methods for the continuous measurement of O2 consumption and H2 production by nodulated legume root systems
Witty, Journal of Experimental Botany 49(323), 1998
Water-deficit effects on carbon and nitrogen metabolism of pea nodules
Gonzalez, Journal of Experimental Botany 49(327), 1998
Review article. Symbiotic N2 fixation response to drought
Serraj, Journal of Experimental Botany 50(331), 1999
Multiple, distinct isoforms of sucrose synthase in pea.
Barratt DH, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C., Plant Physiol. 127(2), 2001
PMID: 11598239
Sucrose synthase in legume nodules is essential for nitrogen fixation
Gordon AJ, Minchin FR, James CL, Komina O., Plant Physiol. 120(3), 1999
PMID: 10398723
Hydrogen peroxide signalling.
Neill S, Desikan R, Hancock J., Curr. Opin. Plant Biol. 5(5), 2002
PMID: 12183176
Oxidative stress, antioxidants and stress tolerance.
Mittler R., Trends Plant Sci. 7(9), 2002
PMID: 12234732
Gas Exchange of Legume Nodules and the Regulation of Nitrogenase Activity
Hunt, Annual Review of Plant Physiology and Plant Molecular Biology 44(1), 1993
Modification of soybean sucrose synthase by S-thiolation with ENOD40 peptide A.
Rohrig H, John M, Schmidt J., Biochem. Biophys. Res. Commun. 325(3), 2004
PMID: 15541370
Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.
Beauchamp C, Fridovich I., Anal. Biochem. 44(1), 1971
PMID: 4943714
Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence.
Alesandrini F, Mathis R, Sype Gvande, Herouart D, Puppo A., New Phytol. 158(1), 2003
PMID: IND23343951
Redox regulation: a broadening horizon.
Buchanan BB, Balmer Y., Annu Rev Plant Biol 56(), 2005
PMID: 15862094
Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase
ZABALZA, Environmental and Experimental Botany 59(2), 2007
Reversible unidirectional inhibition of sucrose synthase activity by disulfides.
Pontis HG, Babio JR, Salerno G., Proc. Natl. Acad. Sci. U.S.A. 78(11), 1981
PMID: 6458816
Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P., Plant Mol. Biol. 62(1-2), 2006
PMID: 16897473
Nitrogenase Activity, Photosynthesis and Nodule Water Potential in Soyabean Plants Experiencing Water Deprivation
DURAND, Journal of Experimental Botany 38(2), 1987
The role of sucrose synthase in the response of soybean nodules to drought
González, Journal of Experimental Botany 46(10), 1995
Analysis of the sucrose synthase gene family in Arabidopsis.
Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM., Plant J. 49(5), 2007
PMID: 17257168
Nitrogen fixation control under drought stress. Localized or systemic?
Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, Gonzalez EM., Plant Physiol. 143(4), 2007
PMID: 17416644
TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase.
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL., Plant Physiol. 144(2), 2007
PMID: 17468221
Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, Gonzalez EM., Plant Physiol. 144(3), 2007
PMID: 17545507
Metabolism of Rhizobium Bacteroids
Lodwig, Critical Reviews in Plant Sciences 22(1), 2003
Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism.
Lopez M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C., J. Plant Physiol. 165(6), 2007
PMID: 17728011
Enzymes of sucrose breakdown in soybean nodules: alkaline invertase.
Morell M, Copeland L., Plant Physiol. 74(4), 1984
PMID: 16663498
Transport and metabolism of 1'-fluorosucrose, a sucrose analog not subject to invertase hydrolysis.
Hitz WD, Schmitt MR, Card PJ, Giaquinta RT., Plant Physiol. 77(2), 1985
PMID: 16664044

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18393622
PubMed | Europe PMC

Suchen in

Google Scholar