Heterogeneous ice nucleation in aqueous solutions: the role of water activity
Zobrist B, Marcolli C, Peter T, Koop T (2008)
JOURNAL OF PHYSICAL CHEMISTRY A 112(17): 3965-3975.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zobrist, B.;
Marcolli, C.;
Peter, T.;
Koop, ThomasUniBi
Einrichtung
Abstract / Bemerkung
Heterogeneous ice nucleation experiments have been performed with four-different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)(2)SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)(2), K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using, a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Delta a(w,het) can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.
Erscheinungsjahr
2008
Zeitschriftentitel
JOURNAL OF PHYSICAL CHEMISTRY A
Band
112
Ausgabe
17
Seite(n)
3965-3975
ISSN
1089-5639
eISSN
1520-5215
Page URI
https://pub.uni-bielefeld.de/record/1588263
Zitieren
Zobrist B, Marcolli C, Peter T, Koop T. Heterogeneous ice nucleation in aqueous solutions: the role of water activity. JOURNAL OF PHYSICAL CHEMISTRY A. 2008;112(17):3965-3975.
Zobrist, B., Marcolli, C., Peter, T., & Koop, T. (2008). Heterogeneous ice nucleation in aqueous solutions: the role of water activity. JOURNAL OF PHYSICAL CHEMISTRY A, 112(17), 3965-3975. https://doi.org/10.1021/jp7112208
Zobrist, B., Marcolli, C., Peter, T., and Koop, Thomas. 2008. “Heterogeneous ice nucleation in aqueous solutions: the role of water activity”. JOURNAL OF PHYSICAL CHEMISTRY A 112 (17): 3965-3975.
Zobrist, B., Marcolli, C., Peter, T., and Koop, T. (2008). Heterogeneous ice nucleation in aqueous solutions: the role of water activity. JOURNAL OF PHYSICAL CHEMISTRY A 112, 3965-3975.
Zobrist, B., et al., 2008. Heterogeneous ice nucleation in aqueous solutions: the role of water activity. JOURNAL OF PHYSICAL CHEMISTRY A, 112(17), p 3965-3975.
B. Zobrist, et al., “Heterogeneous ice nucleation in aqueous solutions: the role of water activity”, JOURNAL OF PHYSICAL CHEMISTRY A, vol. 112, 2008, pp. 3965-3975.
Zobrist, B., Marcolli, C., Peter, T., Koop, T.: Heterogeneous ice nucleation in aqueous solutions: the role of water activity. JOURNAL OF PHYSICAL CHEMISTRY A. 112, 3965-3975 (2008).
Zobrist, B., Marcolli, C., Peter, T., and Koop, Thomas. “Heterogeneous ice nucleation in aqueous solutions: the role of water activity”. JOURNAL OF PHYSICAL CHEMISTRY A 112.17 (2008): 3965-3975.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
16 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale TF, Holden MA, Wilson TW, O'Sullivan D, Murray BJ., Chem Sci 9(17), 2018
PMID: 29780544
Whale TF, Holden MA, Wilson TW, O'Sullivan D, Murray BJ., Chem Sci 9(17), 2018
PMID: 29780544
Activity of Supercooled Water on the Ice Curve and Other Thermodynamic Properties of Liquid Water up to the Boiling Point at Standard Pressure.
Sippola H, Taskinen P., J Chem Eng Data 63(8), 2018
PMID: 30258249
Sippola H, Taskinen P., J Chem Eng Data 63(8), 2018
PMID: 30258249
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
Elliott GD, Wang S, Fuller BJ., Cryobiology 76(), 2017
PMID: 28428046
Elliott GD, Wang S, Fuller BJ., Cryobiology 76(), 2017
PMID: 28428046
The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.
Wang Q, Zhao L, Li C, Cao Z., Sci Rep 6(), 2016
PMID: 27225427
Wang Q, Zhao L, Li C, Cao Z., Sci Rep 6(), 2016
PMID: 27225427
Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M., Langmuir 32(36), 2016
PMID: 27495973
Weng L, Tessier SN, Smith K, Edd JF, Stott SL, Toner M., Langmuir 32(36), 2016
PMID: 27495973
Saltwater icephobicity: Influence of surface chemistry on saltwater icing.
Carpenter K, Bahadur V., Sci Rep 5(), 2015
PMID: 26626958
Carpenter K, Bahadur V., Sci Rep 5(), 2015
PMID: 26626958
A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
Knopf DA, Alpert PA., Faraday Discuss 165(), 2013
PMID: 24601020
Knopf DA, Alpert PA., Faraday Discuss 165(), 2013
PMID: 24601020
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics.
Xiao S, Bertram AK., Phys Chem Chem Phys 13(14), 2011
PMID: 21369605
Xiao S, Bertram AK., Phys Chem Chem Phys 13(14), 2011
PMID: 21369605
Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
Alpert PA, Aller JY, Knopf DA., Phys Chem Chem Phys 13(44), 2011
PMID: 21912788
Alpert PA, Aller JY, Knopf DA., Phys Chem Chem Phys 13(44), 2011
PMID: 21912788
Type I antifreeze proteins enhance ice nucleation above certain concentrations.
Wilson PW, Osterday KE, Heneghan AF, Haymet AD., J Biol Chem 285(45), 2010
PMID: 20837472
Wilson PW, Osterday KE, Heneghan AF, Haymet AD., J Biol Chem 285(45), 2010
PMID: 20837472
Vibrational exciton coupling as a probe for phase transitions and shape changes of fluoroform aerosol particles.
Sigurbjörnsson OF, Firanescu G, Signorell R., Phys Chem Chem Phys 11(1), 2009
PMID: 19081923
Sigurbjörnsson OF, Firanescu G, Signorell R., Phys Chem Chem Phys 11(1), 2009
PMID: 19081923
Effect of solutes on the heterogeneous nucleation temperature of supercooled water: an experimental determination.
Wilson PW, Haymet AD., Phys Chem Chem Phys 11(15), 2009
PMID: 19421525
Wilson PW, Haymet AD., Phys Chem Chem Phys 11(15), 2009
PMID: 19421525
Parameterizations for ice nucleation in biological and atmospheric systems.
Koop T, Zobrist B., Phys Chem Chem Phys 11(46), 2009
PMID: 19924318
Koop T, Zobrist B., Phys Chem Chem Phys 11(46), 2009
PMID: 19924318
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18363389
PubMed | Europe PMC
Suchen in