Revised determination of free and complexed myrosinase activities in plant extracts

Travers-Martin N, Kuhlmann F, Müller C (2008)
PLANT PHYSIOLOGY AND BIOCHEMISTRY 46(4): 506-516.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Travers-Martin, Nora; Kuhlmann, Franziska; Müller, CarolineUniBi
Abstract / Bemerkung
The enzyme myrosinase (thioglucoside glucohydrolase, EC 3.2.1.147, formerly EC 3.2.3.1) catalyzes the hydrolysis of glucosinolates after tissue damage in plants of the order Brassicales. The various myrosinase isoforms occur either as free soluble dimers or as insoluble complexes. We propose a reliable method for determination of both soluble and insoluble myrosinase activity concentrations in partially purified plant extracts. The procedure requires the removal of endogenous glucosinolates through ion-exchange columns previous to enzyme measurements. Myrosinase activity was assayed in continuous mode by photometric quantification of the released glucose using glucose-oxidase with peroxidase and colorimetric indicators. The measurement of the colored product at 492 nm has a favorable signal to noise ratio both in clear extract solutions (free dinners) and in turbid pellet suspensions (insoluble complexes). No interferences by ascorbic acid were found in continuous analyses. With the recommended sample preparation methods and assay conditions potential activities in damaged plant tissues can be characterized which are involved in plant defense mechanisms. (C) 2008 Elsevier Masson SAS. All rights reserved.
Stichworte
proteins; GOD-PAP-method; glucosinolates; myrosinase binding; continuous assay
Erscheinungsjahr
2008
Zeitschriftentitel
PLANT PHYSIOLOGY AND BIOCHEMISTRY
Band
46
Ausgabe
4
Seite(n)
506-516
ISSN
0981-9428
Page URI
https://pub.uni-bielefeld.de/record/1587641

Zitieren

Travers-Martin N, Kuhlmann F, Müller C. Revised determination of free and complexed myrosinase activities in plant extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY. 2008;46(4):506-516.
Travers-Martin, N., Kuhlmann, F., & Müller, C. (2008). Revised determination of free and complexed myrosinase activities in plant extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 46(4), 506-516. https://doi.org/10.1016/j.plaphy.2008.02.008
Travers-Martin, Nora, Kuhlmann, Franziska, and Müller, Caroline. 2008. “Revised determination of free and complexed myrosinase activities in plant extracts”. PLANT PHYSIOLOGY AND BIOCHEMISTRY 46 (4): 506-516.
Travers-Martin, N., Kuhlmann, F., and Müller, C. (2008). Revised determination of free and complexed myrosinase activities in plant extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY 46, 506-516.
Travers-Martin, N., Kuhlmann, F., & Müller, C., 2008. Revised determination of free and complexed myrosinase activities in plant extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 46(4), p 506-516.
N. Travers-Martin, F. Kuhlmann, and C. Müller, “Revised determination of free and complexed myrosinase activities in plant extracts”, PLANT PHYSIOLOGY AND BIOCHEMISTRY, vol. 46, 2008, pp. 506-516.
Travers-Martin, N., Kuhlmann, F., Müller, C.: Revised determination of free and complexed myrosinase activities in plant extracts. PLANT PHYSIOLOGY AND BIOCHEMISTRY. 46, 506-516 (2008).
Travers-Martin, Nora, Kuhlmann, Franziska, and Müller, Caroline. “Revised determination of free and complexed myrosinase activities in plant extracts”. PLANT PHYSIOLOGY AND BIOCHEMISTRY 46.4 (2008): 506-516.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation.
Shih PY, Chou SJ, Müller C, Halkier BA, Deeken R, Lai EM., Mol Plant Pathol (), 2018
PMID: 29498790
Exposure of kale root to NaCl and Na2SeO3 increases isothiocyanate levels and Nrf2 signalling without reducing plant root growth.
Kim SY, Park JE, Kim EO, Lim SJ, Nam EJ, Yun JH, Yoo G, Oh SR, Kim HS, Nho CW., Sci Rep 8(1), 2018
PMID: 29507323
The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae.
Müller C, Schulz M, Pagnotta E, Ugolini L, Yang T, Matthes A, Lazzeri L, Agerbirk N., J Chem Ecol 44(12), 2018
PMID: 30218254
Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.
Vale AP, Santos J, Brito NV, Fernandes D, Rosa E, Oliveira MB., Phytochemistry 115(), 2015
PMID: 25698361
Uncovering different parameters influencing florivory in a specialist herbivore
ABDALSAMEE MK, MÜLLER C., Ecol Entomol 40(3), 2015
PMID: IND601326117
Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases.
Abdalsamee MK, Giampà M, Niehaus K, Müller C., Insect Biochem Mol Biol 52(), 2014
PMID: 25017143
The significance of glucosinolates for sulfur storage in Brassicaceae seedlings.
Aghajanzadeh T, Hawkesford MJ, De Kok LJ., Front Plant Sci 5(), 2014
PMID: 25566279
Myrosinase activity in different plant samples; optimisation of measurement conditions for spectrophotometric and pH-stat methods
Piekarska A, Agnieszka Bartoszek, Barbara Kusznierewicz, Jacek Namieśnik, Karol Dziedziul, Magdalena Meller., Industrial crops and products. 50(), 2013
PMID: IND500696634
Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal
Wang X, Jin Q, Wang T, Huang J, Xia Y, Yao L, Wang X., Ann Microbiol 62(3), 2012
PMID: IND45257961
Folivory versus florivory--adaptiveness of flower feeding.
Bandeili B, Müller C., Naturwissenschaften 97(1), 2010
PMID: 19826770
Decomposers and root feeders interactively affect plant defence in Sinapis alba.
Lohmann M, Scheu S, Müller C., Oecologia 160(2), 2009
PMID: 19252930
Characterization of a root-specific β-thioglucoside glucohydrolase gene in Carica papaya and its recombinant protein expressed in Pichia pastoris
Wang Meng, Li Dingqin, Sun Xuepiao, Zhu YunJudy, Nong Han, Zhang Jiaming., Plant Sci 177(6), 2009
PMID: IND44277151

67 References

Daten bereitgestellt von Europe PubMed Central.

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II
Bremer, Bot. J. Linn. Soc. 141(), 2003
Biology and biochemistry of glucosinolates.
Halkier BA, Gershenzon J., Annu Rev Plant Biol 57(), 2006
PMID: 16669764
The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.
Fahey JW, Zalcmann AT, Talalay P., Phytochemistry 56(1), 2001
PMID: 11198818
Regulation of plant glucosinolate metabolism.
Yan X, Chen S., Planta 226(6), 2007
PMID: 17899172
Glucosinolate research in the Arabidopsis era.
Wittstock U, Halkier BA., Trends Plant Sci. 7(6), 2002
PMID: 12049923
Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane
Höglund, Plant Sci. 85(), 1992
Localization of plant myrosinases and glucosinolates
Andréasson, 2003
The myrosinase-glucosinolate interaction mechanism studied using some synthetic competitive inhibitors.
Iori R, Rollin P, Streicher H, Thiem J, Palmieri S., FEBS Lett. 385(1-2), 1996
PMID: 8641474
The enzymic and chemically induced decomposition of glucosinolates.
Bones AM, Rossiter JT., Phytochemistry 67(11), 2006
PMID: 16624350
A review of mechanisms underlying anticarcinogenicity by brassica vegetables.
Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G., Chem. Biol. Interact. 103(2), 1997
PMID: 9055870
Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities
Li, J. Chem. Ecol. 26(), 2000
Testing predictions of the ‘evolution of increased competitive ability’ hypothesis for an invasive crucifer
Müller, Evol. Ecol. 19(), 2005
Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore – and vice versa
Müller, Chemoecology 16(), 2006
Induction of plant responses by a sequestering insect: Relationship of glucosinolate concentration and myrosinase activity
Martin, Basic Appl. Ecol. 8(), 2007
Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase.
Eylen Dvan, Indrawati , Hendrickx M, Loey Avan., Food Chem 97(2), 2006
PMID: IND43792063
Myrosinase: gene family evolution and herbivore defense in Brassicaceae.
Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J., Plant Mol. Biol. 42(1), 2000
PMID: 10688132
Sequence of a cDNA clone encoding the enzyme myrosinase and expression of myrosinase in different tissues of Brassica napus
Falk, Plant Sci. 83(), 1992
The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family.
Xue JP, Lenman M, Falk A, Rask L., Plant Mol. Biol. 18(2), 1992
PMID: 1731996
Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins.
Eriksson S, Andreasson E, Ekbom B, Graner G, Pontoppidan B, Taipalensuu J, Zhang J, Rask L, Meijer J., Plant Physiol. 129(4), 2002
PMID: 12177471

AUTHOR UNKNOWN, 0
A novel approach for reliable activity determination of ascorbic acid depending myrosinases.
Kleinwachter M, Selmar D., J. Biochem. Biophys. Methods 59(3), 2004
PMID: 15165756
An improved method for the purification of myrosinase and its physicochemical characterization.
Pessina A, Thomas RM, Palmieri S, Luisi PL., Arch. Biochem. Biophys. 280(2), 1990
PMID: 2369130
Comparison of methods for determining myrosinase activity.
Palmieri S, Iori R, Leoni O., J. Agric. Food Chem. 35(4), 1987
PMID: ADL87072254
Soluble and total myrosinase activity in defatted Crambe abyssinica meal.
Finiguerra MG, Iori R, Palmieri S., J. Agric. Food Chem. 49(2), 2001
PMID: 11262038
Evolution of pest-induced defenses in Brassica plants: tests of theory
Siemens, Ecology 79(), 1998
Purification, characterization and partial amino-acid sequencing of beta-thioglucosidase from Brassica napus L
Bones, J. Plant Physiol. 134(), 1989

Segel, 1975
Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana.
Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J., Phytochemistry 62(3), 2003
PMID: 12620360
d-glucose: colorimetric methods with glucose oxidase and peroxidase
Kunst, 1984
A steady-state kinetics study of myrosinase with direct ultraviolet spectrophotometric assay.
Palmieri S, Leoni O, Iori R., Anal. Biochem. 123(2), 1982
PMID: 7125206
Sample preparation (cleaning, drying, homogenization) for trace element analysis in plant matrices
Markert, Sci. Total Environ. 176(), 1995
A micro-column method for the rapid determination of total glucosinolate content of cruciferous material
Heaney, Plant Breed. 87(), 1981

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 2004
Comparison of methods for determining myrosinase activity – rebuttal
Palmieri, J. Agric. Food Chem. 36(), 1988
Nomenclature and units in enzymology
Moss, 1984
Glucose oxidase as an analytical reagent
Raba, CRC Cr. Rev. Anal. Chem. 25(), 1995
Glucotropaeolin and myrosinase production in hairy root cultures of Tropaeolum majus
Wielanek, Plant Cell Tissue Organ Cult. 57(), 1999
Glycosidases of turnip leaf tissues: 1. Physiochemical properties of myrosinase and disaccharase enzymes
El-Sayed, Appl. Biochem. Biotechnol. 49(), 1994
Glycosidases of turnip leaf tissues: 2. Isolation, purification, and some physiochemical characterization
Jwanny, Appl. Biochem. Biotechnol. 49(), 1994
Enzymatic properties of purified myrosinase from Lepidium sativum seedlings
Durham, Z. Naturforsch., C, J. Biosci. 45(), 1990
Myrosinase from roots of Raphanus sativus
Jwanny, Phytochemistry 39(), 1995
myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis.
Lorence A, Chevone BI, Mendes P, Nessler CL., Plant Physiol. 134(3), 2004
PMID: 14976233
Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis.
Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H., Plant J. 44(4), 2005
PMID: 16262714
Copper-induced stress and antioxidative responses in roots of Brassica juncea L
Wang, Bot. Bull. Acad. Sinica (Taiwan) 45(), 2004
Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress.
Qadir S, Qureshi MI, Javed S, Abdin MZ., Plant Sci. 167(5), 2004
PMID: IND43645616
Changes in broccoli (Brassica oleracea L. Var. italica) health-promoting compounds with inflorescence development.
Vallejo F, Garcia-Viguera C, Tomas-Barberan FA., J. Agric. Food Chem. 51(13), 2003
PMID: 12797743
Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata)
Singh, Sci. Hortic. (Amsterdam) 108(), 2006
Myrosinase in Brassicaceae (Cruciferae): 3. Effect of ascorbic acid on myrosinases from Sinapis alba L. seedlings
Pihakaski, J. Exp. Bot. 29(), 1978
Antioxidant characterization of some Sicilian edible wild greens.
Salvatore S, Pellegrini N, Brenna OV, Del Rio D, Frasca G, Brighenti F, Tumino R., J. Agric. Food Chem. 53(24), 2005
PMID: 16302763
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18395461
PubMed | Europe PMC

Suchen in

Google Scholar