Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803

Schriek S, Aguirre-von-Wobeser E, Nodop A, Becker A, Ibelings BW, Bok J, Staiger D, Matthijs HCP, Pistorius EK, Michel K-P (2008)
Physiologia Plantarum 133(3): 525-543.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schriek, Sarah; Aguirre-von-Wobeser, Eneas; Nodop, Anke; Becker, Anke; Ibelings, Bas W.; Bok, Jasper; Staiger, DorotheeUniBi; Matthijs, Hans C. P.; Pistorius, Elfriede K.; Michel, Klaus-Peter
Abstract / Bemerkung
Transcript profiling of nitrate-grown Synechocystis sp. PCC 6803 PsbO-free mutant cells in comparison to wild-type (WT) detected substantial deviations. Because we had previously observed phenotypical differences between Synechocystis sp. PCC 6803 WT and its corresponding PsbO-free mutant when cultivated with L-arginine as sole N source and a light intensity of 200 mu mol photons m(-2) s(-1), we also performed transcript profiling for both strains grown either with nitrate or with L-arginine as sole N source. We observed a total number of 520 differentially regulated transcripts in Synechocystis WT because of a shift from nitrate- to L-arginine-containing BG11 medium, while we detected only 13 differentially regulated transcripts for the PsbO-free mutant. Thus, the PsbO-free Synechocystis mutant had already undergone a preconditioning process for growth with L-arginine in comparison to WT. While Synechocystis WT suffered from growth with L-arginine at a light intensity of 200 mu mol photons m(-2) s(-1), the PsbO-free mutant developed only a minor stress phenotype. In summary, our results suggest that the absence of PsbO in Synechocystis affects the coordination of photosynthesis/respiration and L-arginine metabolism through complex probably redox-mediated regulatory pathways. In addition, we show that a comparison of the transcriptomes of nitrate-grown Synechococcus elongatus PCC 7942 WT cells and its corresponding PsbO-free mutant cells resulted in only a few differentially regulated transcripts between both strains. The absence of the manganese/calcium-stabilizing PsbO protein of PSII with an assigned regulatory function for photosynthetic water oxidation causes bigger changes in the transcriptome of the permissive photoheterotrophically growing Synechocystis sp. PCC 6803 than in the transcriptome of the obligate photoautotrophically growing S. elongatus PCC 7942.
Erscheinungsjahr
2008
Zeitschriftentitel
Physiologia Plantarum
Band
133
Ausgabe
3
Seite(n)
525-543
ISSN
0031-9317
eISSN
1399-3054
Page URI
https://pub.uni-bielefeld.de/record/1587337

Zitieren

Schriek S, Aguirre-von-Wobeser E, Nodop A, et al. Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803. Physiologia Plantarum. 2008;133(3):525-543.
Schriek, S., Aguirre-von-Wobeser, E., Nodop, A., Becker, A., Ibelings, B. W., Bok, J., Staiger, D., et al. (2008). Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803. Physiologia Plantarum, 133(3), 525-543. https://doi.org/10.1111/j.1399-3054.2008.01119.x
Schriek, Sarah, Aguirre-von-Wobeser, Eneas, Nodop, Anke, Becker, Anke, Ibelings, Bas W., Bok, Jasper, Staiger, Dorothee, Matthijs, Hans C. P., Pistorius, Elfriede K., and Michel, Klaus-Peter. 2008. “Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803”. Physiologia Plantarum 133 (3): 525-543.
Schriek, S., Aguirre-von-Wobeser, E., Nodop, A., Becker, A., Ibelings, B. W., Bok, J., Staiger, D., Matthijs, H. C. P., Pistorius, E. K., and Michel, K. - P. (2008). Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803. Physiologia Plantarum 133, 525-543.
Schriek, S., et al., 2008. Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803. Physiologia Plantarum, 133(3), p 525-543.
S. Schriek, et al., “Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803”, Physiologia Plantarum, vol. 133, 2008, pp. 525-543.
Schriek, S., Aguirre-von-Wobeser, E., Nodop, A., Becker, A., Ibelings, B.W., Bok, J., Staiger, D., Matthijs, H.C.P., Pistorius, E.K., Michel, K.-P.: Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803. Physiologia Plantarum. 133, 525-543 (2008).
Schriek, Sarah, Aguirre-von-Wobeser, Eneas, Nodop, Anke, Becker, Anke, Ibelings, Bas W., Bok, Jasper, Staiger, Dorothee, Matthijs, Hans C. P., Pistorius, Elfriede K., and Michel, Klaus-Peter. “Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp PCC 6803”. Physiologia Plantarum 133.3 (2008): 525-543.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium.
Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y, Zhang Y, Wang X, Xu W, He Q, Wang Y., Mol Cell Proteomics 16(7), 2017
PMID: 28668777
A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803.
Maarleveld TR, Boele J, Bruggeman FJ, Teusink B., Plant Physiol 164(3), 2014
PMID: 24402049
Detection of an L-amino acid dehydrogenase activity in Synechocystis sp. PCC 6803.
Schriek S, Kahmann U, Staiger D, Pistorius EK, Michel KP., J Exp Bot 60(3), 2009
PMID: 19213808

77 References

Daten bereitgestellt von Europe PubMed Central.

Biosynthesis and metabolism of arginine in bacteria.
Cunin R, Glansdorff N, Pierard A, Stalon V., Microbiol. Rev. 50(3), 1986
PMID: 3534538

dietz, prog bot 63(), 2002

dudoit, stat sin 12(), 2002
L-amino acid oxidases with specificity for basic L-amino acids in cyanobacteria.
Gau AE, Heindl A, Nodop A, Kahmann U, Pistorius EK., Z. Naturforsch., C, J. Biosci. 62(3-4), 2007
PMID: 17542496

ke, 2001

link, 2001

mackerras, j gen microbiol 136(), 1990

mackerras, j gen microbiol 136(), 1990

michel, physiol plant 119(), 2004
Physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking histidine kinase Slr1759 and response regulator Slr1760.
Nodop A, Suzuki I, Barsch A, Schroder AK, Niehaus K, Staiger D, Pistorius EK, Michel KP., Z. Naturforsch., C, J. Biosci. 61(11-12), 2006
PMID: 17294699

simon, 1987

straus, 1994

tabita, 1994

yang, nucleic acids res 30(), 2002
The origin and evolution of oxygenic photosynthesis.
Blankenship RE, Hartman H, Blankenship RE., Trends Biochem. Sci. 23(3), 1998
PMID: 9581499
Photosystem II.
Barber J, Kuhlbrandt W., Curr. Opin. Struct. Biol. 9(4), 1999
PMID: 10449373

Sherman, Photosynthesis Research 58(1), 1998
Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of photosystem II
Huner, Physiologia Plantarum 98(2), 1996
Principles of redox control in photosynthesis gene expression
Pfannschmidt, Physiologia Plantarum 112(1), 2001
Three-dimensional structure of the plant photosystem II reaction centre at 8 A resolution.
Rhee KH, Morris EP, Barber J, Kuhlbrandt W., Nature 396(6708), 1998
PMID: 9834037
Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution.
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P., Nature 409(6821), 2001
PMID: 11217865
Arginine catabolism in the cyanobacterium Synechocystis sp. Strain PCC 6803 involves the urea cycle and arginase pathway.
Quintero MJ, Muro-Pastor AM, Herrero A, Flores E., J. Bacteriol. 182(4), 2000
PMID: 10648527
STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS.
Hankamer B, Barber J, Boekema EJ., Annu. Rev. Plant Physiol. Plant Mol. Biol. 48(), 1997
PMID: 15012277
Cyanobacterial cell inclusions.
Allen MM., Annu. Rev. Microbiol. 38(), 1984
PMID: 6437321
How does light regulate chloroplast enzymes? Structure-function studies of the ferredoxin/thioredoxin system.
Dai S, Schwendtmayer C, Johansson K, Ramaswamy S, Schurmann P, Eklund H., Q. Rev. Biophys. 33(1), 2000
PMID: 11075389
Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides.
Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB., Biochemistry 41(25), 2002
PMID: 12069591
Chloroplast redox signals: how photosynthesis controls its own genes.
Pfannschmidt T., Trends Plant Sci. 8(1), 2003
PMID: 12523998
Photoinhibition of Photosystem II. Inactivation, protein damage and turnover.
Aro EM, Virgin I, Andersson B., Biochim. Biophys. Acta 1143(2), 1993
PMID: 8318516
The aerobic respiratory chain of Escherichia coli
Anraku, Trends in Biochemical Sciences 12(), 1987
The manganese and calcium ions of photosynthetic oxygen evolution.
Debus RJ., Biochim. Biophys. Acta 1102(3), 1992
PMID: 1390827
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins.
De Las Rivas J, Balsera M, Barber J., Trends Plant Sci. 9(1), 2004
PMID: 14729215
The 33 kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein.
Kruk J, Burda K, Jemiola-Rzeminska M, Strzalka K., Biochemistry 42(50), 2003
PMID: 14674761
Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen.
Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B., Proc. Natl. Acad. Sci. U.S.A. 101(5), 2004
PMID: 14736920
Architecture of the photosynthetic oxygen-evolving center.
Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S., Science 303(5665), 2004
PMID: 14764885
Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem ii activity in the cyanobacterium Synechocystis 6803.
Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB., Plant Cell 16(8), 2004
PMID: 15258264
Analysis of the Structure of the PsbO Protein and its Implications.
De Las Rivas J, Barber J., Photosyn. Res. 81(3), 2004
PMID: 16034536
Inactivation of the water-oxidizing enzyme in manganese stabilizing protein-free mutant cells of the cyanobacteria Synechococcus PCC7942 and Synechocystic PCC6803 during dark incubation and conditions leading to photoactivation
Engels, Photosynthesis Research 42(3), 1994
The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues
Anderson, Photosynthesis Research 46(1-2), 1995
Photochemical activities of a particle fraction P 1 obtained rom the green alga Chlorella fusca.
Grimme LH, Boardman NK., Biochem. Biophys. Res. Commun. 49(6), 1972
PMID: 4404797
Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli.
Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR., J. Biol. Chem. 280(16), 2005
PMID: 15705577
The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in synechocystis.
Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N., Plant Physiol. 138(3), 2005
PMID: 15965020
LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator.
Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J., Mol. Microbiol. 58(3), 2005
PMID: 16238629
Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II.
Loll B, Kern J, Saenger W, Zouni A, Biesiadka J., Nature 438(7070), 2005
PMID: 16355230
Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308.
Kolodny NH, Bauer D, Bryce K, Klucevsek K, Lane A, Medeiros L, Mercer W, Moin S, Park D, Petersen J, Wright J, Yuen C, Wolfson AJ, Allen MM., J. Bacteriol. 188(3), 2006
PMID: 16428397
PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803.
Maheswaran M, Ziegler K, Lockau W, Hagemann M, Forchhammer K., J. Bacteriol. 188(7), 2006
PMID: 16547064
Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation
Allen, Physiologia Plantarum 100(4), 1997
Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution.
Ashby MK, Houmard J., Microbiol. Mol. Biol. Rev. 70(2), 2006
PMID: 16760311
Deletion of the gene encoding the Photosystem II 33 kDa protein from Synechocystis sp. PCC 6803 does not inactivate water-splitting but increases vulnerability to photoinhibition
MAYES, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1060(1), 1991
Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex.
Lundin B, Thuswaldner S, Shutova T, Eshaghi S, Samuelsson G, Barber J, Andersson B, Spetea C., Biochim. Biophys. Acta 1767(6), 2006
PMID: 17223069
Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II.
Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rogner M., Plant Cell 18(11), 2006
PMID: 17114356
Formation of Radioactive Citrulline during Photosynthetic C14O2-Fixation by Blue-Green Algae
LINKO, Journal of Experimental Botany 8(1), 1957
The PsbQ protein defines cyanobacterial Photosystem II complexes with highest activity and stability.
Roose JL, Kashino Y, Pakrasi HB., Proc. Natl. Acad. Sci. U.S.A. 104(7), 2007
PMID: 17287351
Oxygen-evolving extrinsic proteins (PsbO,P,Q,R): bioinformatic and functional analysis.
De Las Rivas J, Heredia P, Roman A., Biochim. Biophys. Acta 1767(6), 2007
PMID: 17367749
On the Inside
Minorsky, PLANT PHYSIOLOGY 147(1), 2008
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18419737
PubMed | Europe PMC

Suchen in

Google Scholar