Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1

Cornbier J-P, Küster H, Journet E-P, Hohnjec N, Gamas P, Niebel A (2008)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Cornbier, Jean-Philippe; Küster, Helge; Journet, Etienne-Pascal; Hohnjec, Natalija; Gamas, Pascal; Niebel, Andreas
Abstract / Bemerkung
Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
rhizobial infection
Page URI


Cornbier J-P, Küster H, Journet E-P, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS. 2008;21(8):1118-1127.
Cornbier, J. - P., Küster, H., Journet, E. - P., Hohnjec, N., Gamas, P., & Niebel, A. (2008). Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(8), 1118-1127. https://doi.org/10.1094/MPMI-21-8-1118
Cornbier, J. - P., Küster, H., Journet, E. - P., Hohnjec, N., Gamas, P., and Niebel, A. (2008). Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS 21, 1118-1127.
Cornbier, J.-P., et al., 2008. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS, 21(8), p 1118-1127.
J.-P. Cornbier, et al., “Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 21, 2008, pp. 1118-1127.
Cornbier, J.-P., Küster, H., Journet, E.-P., Hohnjec, N., Gamas, P., Niebel, A.: Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. MOLECULAR PLANT-MICROBE INTERACTIONS. 21, 1118-1127 (2008).
Cornbier, Jean-Philippe, Küster, Helge, Journet, Etienne-Pascal, Hohnjec, Natalija, Gamas, Pascal, and Niebel, Andreas. “Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1”. MOLECULAR PLANT-MICROBE INTERACTIONS 21.8 (2008): 1118-1127.

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond.
Franck CM, Westermann J, Boisson-Dernier A., Annu Rev Plant Biol 69(), 2018
PMID: 29539271
Hormone modulation of legume-rhizobial symbiosis.
Liu H, Zhang C, Yang J, Yu N, Wang E., J Integr Plant Biol 60(8), 2018
PMID: 29578639
Impact of Plant Peptides on Symbiotic Nodule Development and Functioning.
Kereszt A, Mergaert P, Montiel J, Endre G, Kondorosi É., Front Plant Sci 9(), 2018
PMID: 30065740
LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization.
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B., Front Plant Sci 9(), 2018
PMID: 30405668
Genome-Wide Identification of Medicago Peptides Involved in Macronutrient Responses and Nodulation.
de Bang TC, Lundquist PK, Dai X, Boschiero C, Zhuang Z, Pant P, Torres-Jerez I, Roy S, Nogales J, Veerappan V, Dickstein R, Udvardi MK, Zhao PX, Scheible WR., Plant Physiol 175(4), 2017
PMID: 29030416
Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development.
Lee XW, Mat-Isa MN, Mohd-Elias NA, Aizat-Juhari MA, Goh HH, Dear PH, Chow KS, Haji Adam J, Mohamed R, Firdaus-Raih M, Wan KL., PLoS One 11(12), 2016
PMID: 27977777
Comparative analysis of the RTFL peptide family on the control of plant organogenesis.
Guo P, Yoshimura A, Ishikawa N, Yamaguchi T, Guo Y, Tsukaya H., J Plant Res 128(3), 2015
PMID: 25701405
Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C., New Phytol 208(1), 2015
PMID: 25919491
Small-peptide signals that control root nodule number, development, and symbiosis.
Djordjevic MA, Mohd-Radzman NA, Imin N., J Exp Bot 66(17), 2015
PMID: 26249310
The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions.
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BP., Plant Cell 27(8), 2015
PMID: 26276833
Biological activity of nine recombinant AtRALF peptides: implications for their perception and function in Arabidopsis.
Morato do Canto A, Ceciliato PH, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, Moura DS., Plant Physiol Biochem 75(), 2014
PMID: 24368323
Substantial expression of novel small open reading frames in Oryza sativa.
Okamoto M, Higuchi-Takeuchi M, Shimizu M, Shinozaki K, Hanada K., Plant Signal Behav 9(2), 2014
PMID: 24526015
Plant peptides in defense and signaling.
Marmiroli N, Maestri E., Peptides 56(), 2014
PMID: 24681437
Understanding the RALF family: a tale of many species.
Murphy E, De Smet I., Trends Plant Sci 19(10), 2014
PMID: 24999241
Phytohormone regulation of legume-rhizobia interactions.
Ferguson BJ, Mathesius U., J Chem Ecol 40(7), 2014
PMID: 25052910
DVL genes play a role in the coordination of socket cell recruitment and differentiation.
Valdivia ER, Chevalier D, Sampedro J, Taylor I, Niederhuth CE, Walker JC., J Exp Bot 63(3), 2012
PMID: 22112938
Functional markers delimiting a Medicago orthologue of pea symbiotic gene NOD3
Novák K, Biedermannová E, Vondrys J., Euphytica 186(3), 2012
PMID: IND44739149
ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot.
Ikeuchi M, Yamaguchi T, Kazama T, Ito T, Horiguchi G, Tsukaya H., Plant Cell Physiol 52(1), 2011
PMID: 20826883
Peptide signalling in the rhizobium-legume symbiosis.
Batut J, Mergaert P, Masson-Boivin C., Curr Opin Microbiol 14(2), 2011
PMID: 21236724
Transcription reprogramming during root nodule development in Medicago truncatula.
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P., PLoS One 6(1), 2011
PMID: 21304580
Dual RNAs in plants.
Bardou F, Merchan F, Ariel F, Crespi M., Biochimie 93(11), 2011
PMID: 21824505
A remorin protein interacts with symbiotic receptors and regulates bacterial infection.
Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T., Proc Natl Acad Sci U S A 107(5), 2010
PMID: 20133878
TRUNCATULIX--a data warehouse for the legume community.
Henckel K, Runte KJ, Bekel T, Dondrup M, Jakobi T, Küster H, Goesmann A., BMC Plant Biol 9(), 2009
PMID: 19210766
Long-distance control of nodulation: molecules and models.
Magori S, Kawaguchi M., Mol Cells 27(2), 2009
PMID: 19277493
(Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti.
Pucciariello C, Innocenti G, Van de Velde W, Lambert A, Hopkins J, Clément M, Ponchet M, Pauly N, Goormachtig S, Holsters M, Puppo A, Frendo P., Plant Physiol 151(3), 2009
PMID: 19587096

62 References

Daten bereitgestellt von Europe PubMed Central.

AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif.
Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker DG, de Carvalho-Niebel F., Plant Cell 19(9), 2007
PMID: 17827349
The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.
Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, Gough C., Plant Physiol. 142(1), 2006
PMID: 16844829
MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence.
Boisson-Dernier A, Andriankaja A, Chabaud M, Niebel A, Journet EP, Barker DG, de Carvalho-Niebel F., Mol. Plant Microbe Interact. 18(12), 2005
PMID: 16478046
Rhizobium meliloti Genes Encoding Catabolism of Trigonelline Are Induced under Symbiotic Conditions.
Boivin C, Camut S, Malpica CA, Truchet G, Rosenberg C., Plant Cell 2(12), 1990
PMID: 12354952
The LATD gene of Medicago truncatula is required for both nodule and root development.
Bright LJ, Liang Y, Mitchell DM, Harris JM., Mol. Plant Microbe Interact. 18(6), 2005
PMID: 15986921
MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula.
Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A., Genes Dev. 20(22), 2006
PMID: 17114582
Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti.
Cook D, Dreyer D, Bonnet D, Howell M, Nony E, VandenBosch K., Plant Cell 7(1), 1995
PMID: 7696879

Crespi, EMBO (Eur. Mol. Biol. Organ.) J. 13(), 1994
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors.
Ehrhardt DW, Atkinson EM, Long SR., Science 256(5059), 1992
PMID: 10744524
Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program.
El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P., Plant Physiol. 136(2), 2004
PMID: 15466239

Nod factor signaling genes and their function in the early stages of Rhizobium infection.
Geurts R, Fedorova E, Bisseling T., Curr. Opin. Plant Biol. 8(4), 2005
PMID: 15955723
Computational identification and characterization of novel genes from legumes.
Graham MA, Silverstein KA, Cannon SB, VandenBosch KA., Plant Physiol. 135(3), 2004
PMID: 15266052
Plant hormones and nodulation: what's the connection?
Hirsch AM, Fang Y., Plant Mol. Biol. 26(1), 1994
PMID: 7948898
Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells.
Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386369
LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections.
Kuppusamy KT, Endre G, Prabhu R, Penmetsa RV, Veereshlingam H, Cook DR, Dickstein R, Vandenbosch KA., Plant Physiol. 136(3), 2004
PMID: 15516512
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula.
Kuster H, Hohnjec N, Krajinski F, El YF, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Puhler A, Gamas P, Becker A., J. Biotechnol. 108(2), 2004
PMID: 15129719
Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant.
Liang Y, Mitchell DM, Harris JM., Dev. Biol. 304(1), 2006
PMID: 17239844
LysM domain receptor kinases regulating rhizobial Nod factor-induced infection.
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R., Science 302(5645), 2003
PMID: 12947035
Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2.
Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R., Proc. Natl. Acad. Sci. U.S.A. 102(29), 2005
PMID: 16006515

Peptide hormones in plants.
Matsubayashi Y, Sakagami Y., Annu Rev Plant Biol 57(), 2006
PMID: 16669777
A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs.
Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E., Plant Physiol. 132(1), 2003
PMID: 12746522
An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction.
Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE., Plant Cell 19(4), 2007
PMID: 17449807

Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana.
Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrich J, Tsukaya H., Plant J. 38(4), 2004
PMID: 15125775
Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501.
Niwa S, Kawaguchi M, Imazumi-Anraku H, Chechetka SA, Ishizaka M, Ikuta A, Kouchi H., Mol. Plant Microbe Interact. 14(7), 2001
PMID: 11437258
Bioinformatic analysis of the CLE signaling peptide family.
Oelkers K, Goffard N, Weiller GF, Gresshoff PM, Mathesius U, Frickey T., BMC Plant Biol. 8(), 2008
PMID: 18171480
Plant science. Nodules and hormones.
Oldroyd GE., Science 315(5808), 2007
PMID: 17204633
Calcium, kinases and nodulation signalling in legumes.
Oldroyd GE, Downie JA., Nat. Rev. Mol. Cell Biol. 5(7), 2004
PMID: 15232574
Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula.
Oldroyd GE, Engstrom EM, Long SR., Plant Cell 13(8), 2001
PMID: 11487696
Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs.
Olsen AN, Mundy J, Skriver K., In Silico Biol. (Gedrukt) 2(4), 2002
PMID: 12611624
RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development.
Pearce G, Moura DS, Stratmann J, Ryan CA Jr., Proc. Natl. Acad. Sci. U.S.A. 98(22), 2001
PMID: 11675511
A Legume Ethylene-Insensitive Mutant Hyperinfected by Its Rhizobial Symbiont
Penmetsa RV, Cook DR., Science 275(5299), 1997
PMID: 8999796
Dual genetic pathways controlling nodule number in Medicago truncatula.
Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR., Plant Physiol. 131(3), 2003
PMID: 12644652
Soybean ENOD40 encodes two peptides that bind to sucrose synthase.
Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M., Proc. Natl. Acad. Sci. U.S.A. 99(4), 2002
PMID: 11842184

Ryan, Plant Cell (Suppl.) 14(), 2002

The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length.
Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J., Plant Mol. Biol. 58(6), 2005
PMID: 16240175
Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants.
Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA., Plant J. 51(2), 2007
PMID: 17565583
Genetics and functional genomics of legume nodulation.
Stacey G, Libault M, Brechenmacher L, Wan J, May GD., Curr. Opin. Plant Biol. 9(2), 2006
PMID: 16458572
Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation.
Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM., Plant J. 46(6), 2006
PMID: 16805730

Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium.
van Brussel AA, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJ, Kijne JW., Science 257(5066), 1992
PMID: 17800714
Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume.
van de Sande K, Pawlowski K, Czaja I, Wieneke U, Schell J, Schmidt J, Walden R, Matvienko M, Wellink J, van Kammen A, Franssen H, Bisseling T., Science 273(5273), 1996
PMID: 8662527
nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.
Veereshlingam H, Haynes JG, Penmetsa RV, Cook DR, Sherrier DJ, Dickstein R., Plant Physiol. 136(3), 2004
PMID: 15516506


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 18616408
PubMed | Europe PMC

Suchen in

Google Scholar