Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations

Boeckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmueller H (2008)
BIOPHYSICAL JOURNAL 95(4): 1837-1850.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Boeckmann, Rainer A.; de Groot, Bert L.; Kakorin, SergejUniBi; Neumann, EberhardUniBi; Grubmueller, Helmut
Abstract / Bemerkung
Membrane electroporation is the method to directly transfer bioactive substances such as drugs and genes into living cells, as well as preceding electrofusion. Although much information on the microscopic mechanism has been obtained both from experiment and simulation, the existence and nature of possible intermediates is still unclear. To elucidate intermediates of electropore formation by direct comparison with measured prepore formation kinetics, we have carried out 49 atomistic electroporation simulations on a palmitoyl-oleoyl-phosphatidylcholine bilayer for electric field strengths between 0.04 and 0.7 V/nm. A statistical theory is developed to facilitate direct comparison of experimental (macroscopic) prepore formation kinetics with the (single event) preporation times derived from the simulations, which also allows us to extract an effective number of lipids involved in each pore formation event. A linear dependency of the activation energy for prepore formation on the applied field is seen, with quantitative agreement between experiment and simulation. The distribution of preporation times suggests a four-state pore formation model. The model involves a first intermediate characterized by a differential tilt of the polar lipid headgroups on both leaflets, and a second intermediate (prepore), where a polar chain across the bilayer is formed by 3-4 lipid headgroups and several water molecules, thereby providing a microscopic explanation for the polarizable volume derived previously from the measured kinetics. An average pore radius of 0.47 +/- 0.15 nm is seen, in favorable agreement with conductance measurements and electrooptical experiments of lipid vesicles.
Erscheinungsjahr
2008
Zeitschriftentitel
BIOPHYSICAL JOURNAL
Band
95
Ausgabe
4
Seite(n)
1837-1850
ISSN
0006-3495
Page URI
https://pub.uni-bielefeld.de/record/1586986

Zitieren

Boeckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmueller H. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. BIOPHYSICAL JOURNAL. 2008;95(4):1837-1850.
Boeckmann, R. A., de Groot, B. L., Kakorin, S., Neumann, E., & Grubmueller, H. (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. BIOPHYSICAL JOURNAL, 95(4), 1837-1850. https://doi.org/10.1529/biophysj.108.129437
Boeckmann, Rainer A., de Groot, Bert L., Kakorin, Sergej, Neumann, Eberhard, and Grubmueller, Helmut. 2008. “Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations”. BIOPHYSICAL JOURNAL 95 (4): 1837-1850.
Boeckmann, R. A., de Groot, B. L., Kakorin, S., Neumann, E., and Grubmueller, H. (2008). Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. BIOPHYSICAL JOURNAL 95, 1837-1850.
Boeckmann, R.A., et al., 2008. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. BIOPHYSICAL JOURNAL, 95(4), p 1837-1850.
R.A. Boeckmann, et al., “Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations”, BIOPHYSICAL JOURNAL, vol. 95, 2008, pp. 1837-1850.
Boeckmann, R.A., de Groot, B.L., Kakorin, S., Neumann, E., Grubmueller, H.: Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. BIOPHYSICAL JOURNAL. 95, 1837-1850 (2008).
Boeckmann, Rainer A., de Groot, Bert L., Kakorin, Sergej, Neumann, Eberhard, and Grubmueller, Helmut. “Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations”. BIOPHYSICAL JOURNAL 95.4 (2008): 1837-1850.

71 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
Castellani F, Teissié J, Vernier PT., J Membr Biol 251(2), 2018
PMID: 29094194
Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2.
Kirsch SA, Kugemann A, Carpaneto A, Böckmann RA, Dietrich P., Cell Mol Life Sci 75(20), 2018
PMID: 29705952
Transprotein-Electropore Characterization: A Molecular Dynamics Investigation on Human AQP4.
Marracino P, Bernardi M, Liberti M, Del Signore F, Trapani E, Gárate JA, Burnham CJ, Apollonio F, English NJ., ACS Omega 3(11), 2018
PMID: 30556005
Geometrical Characterization of an Electropore from Water Positional Fluctuations.
Marracino P, Castellani F, Vernier PT, Liberti M, Apollonio F., J Membr Biol 250(1), 2017
PMID: 27435217
Computing Spatiotemporal Heat Maps of Lipid Electropore Formation: A Statistical Approach.
Wriggers W, Castellani F, Kovacs JA, Vernier PT., Front Mol Biosci 4(), 2017
PMID: 28487856
Computational studies of peptide-induced membrane pore formation.
Lipkin R, Lazaridis T., Philos Trans R Soc Lond B Biol Sci 372(1726), 2017
PMID: 28630158
Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations.
Sun L, Bertelshofer F, Greiner G, Böckmann RA., Front Bioeng Biotechnol 4(), 2016
PMID: 26913282
Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters.
Blumrosen G, Abazari A, Golberg A, Yarmush ML, Toner M., Biochim Biophys Acta 1858(9), 2016
PMID: 27263825
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study.
Novickij V, Grainys A, Lastauskienė E, Kananavičiūtė R, Pamedytytė D, Kalėdienė L, Novickij J, Miklavčič D., Sci Rep 6(), 2016
PMID: 27634482
Membrainy: a 'smart', unified membrane analysis tool.
Carr M, MacPhee CE., Source Code Biol Med 10(), 2015
PMID: 26060507
Picosecond and Terahertz Perturbation of Interfacial Water and Electropermeabilization of Biological Membranes.
Vernier PT, Levine ZA, Ho MC, Xiao S, Semenov I, Pakhomov AG., J Membr Biol 248(5), 2015
PMID: 25796485
Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation.
Venslauskas MS, Šatkauskas S., Eur Biophys J 44(5), 2015
PMID: 25939984
Different Cell Viability Assays Reveal Inconsistent Results After Bleomycin Electrotransfer In Vitro.
Jakštys B, Ruzgys P, Tamošiūnas M, Šatkauskas S., J Membr Biol 248(5), 2015
PMID: 26077843
GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules.
Bertelshofer F, Sun L, Greiner G, Böckmann RA., Front Bioeng Biotechnol 3(), 2015
PMID: 26636074
When do defectless alkanethiol SAMs in ionic liquids become penetrable? A molecular dynamics study.
Kislenko SA, Nikitina VA, Nazmutdinov RR., Phys Chem Chem Phys 17(47), 2015
PMID: 26568158
Energetic view on membrane pore formation.
Pannuzzo M, Böckmann RA., Biophys J 106(1), 2014
PMID: 24411229
Atomistic simulations of pore formation and closure in lipid bilayers.
Bennett WF, Sapay N, Tieleman DP., Biophys J 106(1), 2014
PMID: 24411253
Electroporation of archaeal lipid membranes using MD simulations.
Polak A, Tarek M, Tomšič M, Valant J, Ulrih NP, Jamnik A, Kramar P, Miklavčič D., Bioelectrochemistry 100(), 2014
PMID: 24461702
Functional truncated membrane pores.
Stoddart D, Ayub M, Höfler L, Raychaudhuri P, Klingelhoefer JW, Maglia G, Heron A, Bayley H., Proc Natl Acad Sci U S A 111(7), 2014
PMID: 24469792
Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells.
Escoffre JM, Bellard E, Faurie C, Sébaï SC, Golzio M, Teissié J, Rols MP., Biochim Biophys Acta 1838(7), 2014
PMID: 24583083
Irreversible electroporation: evolution of a laboratory technique in interventional oncology.
Deipolyi AR, Golberg A, Yarmush ML, Arellano RS, Oklu R., Diagn Interv Radiol 20(2), 2014
PMID: 24412820
A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M., Bioelectrochemistry 100(), 2014
PMID: 24731593
Model of pore formation in a single cell in a flow-through channel with micro-electrodes.
Kaner A, Braslavsky I, Rubinsky B., Biomed Microdevices 16(2), 2014
PMID: 24150603
Water channel formation and ion transport in linear and branched lipid bilayers.
Wang S, Larson RG., Phys Chem Chem Phys 16(16), 2014
PMID: 24618598
The free energy of nanopores in tense membranes.
Grafmüller A, Knecht V., Phys Chem Chem Phys 16(23), 2014
PMID: 24780914
Basic features of a cell electroporation model: illustrative behavior for two very different pulses.
Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC., J Membr Biol 247(12), 2014
PMID: 25048527
In vivo microinjection and electroporation of mouse testis.
Michaelis M, Sobczak A, Weitzel JM., J Vis Exp (90), 2014
PMID: 25177859
An engineered membrane to measure electroporation: effect of tethers and bioelectronic interface.
Hoiles W, Krishnamurthy V, Cranfield CG, Cornell B., Biophys J 107(6), 2014
PMID: 25229142
Synthetic biology outside the cell: linking computational tools to cell-free systems.
Lewis DD, Villarreal FD, Wu F, Tan C., Front Bioeng Biotechnol 2(), 2014
PMID: 25538941
Nonthermal irreversible electroporation: fundamentals, applications, and challenges.
Golberg A, Yarmush ML., IEEE Trans Biomed Eng 60(3), 2013
PMID: 23314769
Lipid nanotechnology.
Mashaghi S, Jadidi T, Koenderink G, Mashaghi A., Int J Mol Sci 14(2), 2013
PMID: 23429269
Electric field-driven water dipoles: nanoscale architecture of electroporation.
Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT., PLoS One 8(4), 2013
PMID: 23593404
Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.
Ho MC, Levine ZA, Vernier PT., J Membr Biol 246(11), 2013
PMID: 23644990
Molecular dynamic simulation of transmembrane pore growth.
Deminsky M, Eletskii A, Kniznik A, Odinokov A, Pentkovskii V, Potapkin B., J Membr Biol 246(11), 2013
PMID: 23660813
Single-cell juxtacellular transfection and recording technique.
Daniel J, Polder HR, Lessmann V, Brigadski T., Pflugers Arch 465(11), 2013
PMID: 23748581
Constant electric field simulations of the membrane potential illustrated with simple systems.
Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B., Biochim Biophys Acta 1818(2), 2012
PMID: 22001851
BROMOC-D: Brownian Dynamics/Monte-Carlo Program Suite to Study Ion and DNA Permeation in Nanopores.
De Biase PM, Solano CJ, Markosyan S, Czapla L, Noskov SY., J Chem Theory Comput 8(7), 2012
PMID: 22798730
Molecular dynamics simulations of lipid membrane electroporation.
Delemotte L, Tarek M., J Membr Biol 245(9), 2012
PMID: 22644388
Size-controlled nanopores in lipid membranes with stabilizing electric fields.
Fernández ML, Risk M, Reigada R, Vernier PT., Biochem Biophys Res Commun 423(2), 2012
PMID: 22659739
Molecular-level characterization of lipid membrane electroporation using linearly rising current.
Kramar P, Delemotte L, Maček Lebar A, Kotulska M, Tarek M, Miklavčič D., J Membr Biol 245(10), 2012
PMID: 22886207
A lipocentric view of peptide-induced pores.
Fuertes G, Giménez D, Esteban-Martín S, Sánchez-Muñoz OL, Salgado J., Eur Biophys J 40(4), 2011
PMID: 21442255
ETM study of electroporation influence on cell morphology in human malignant melanoma and human primary gingival fibroblast cells.
Skolucka N, Daczewska M, Saczko J, Chwilkowska A, Choromanska A, Kotulska M, Kaminska I, Kulbacka J., Asian Pac J Trop Biomed 1(2), 2011
PMID: 23569735
Dynamics of a lipid bilayer induced by electric fields.
Venturini A, Zerbetto F., Phys Chem Chem Phys 13(20), 2011
PMID: 21468426
Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields.
White JA, Pliquett U, Blackmore PF, Joshi RP, Schoenbach KH, Kolb JF., Eur Biophys J 40(8), 2011
PMID: 21594746
Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail.
Kutzner C, Grubmüller H, de Groot BL, Zachariae U., Biophys J 101(4), 2011
PMID: 21843471
Lipid ion channels.
Heimburg T., Biophys Chem 150(1-3), 2010
PMID: 20385440
Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6.
Flickinger B, Berghöfer T, Hohenberger P, Eing C, Frey W., Protoplasma 247(1-2), 2010
PMID: 20309592
Comparing the temperature-dependent conductance of the two structurally similar E. coli porins OmpC and OmpF.
Biró I, Pezeshki S, Weingart H, Winterhalter M, Kleinekathöfer U., Biophys J 98(9), 2010
PMID: 20441746
Polarizable water model for the coarse-grained MARTINI force field.
Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ., PLoS Comput Biol 6(6), 2010
PMID: 20548957
Lipids on the move: simulations of membrane pores, domains, stalks and curves.
Marrink SJ, de Vries AH, Tieleman DP., Biochim Biophys Acta 1788(1), 2009
PMID: 19013128
The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics.
Blicher A, Wodzinska K, Fidorra M, Winterhalter M, Heimburg T., Biophys J 96(11), 2009
PMID: 19486680
Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF.
Pezeshki S, Chimerel C, Bessonov AN, Winterhalter M, Kleinekathöfer U., Biophys J 97(7), 2009
PMID: 19804720
Electroporating fields target oxidatively damaged areas in the cell membrane.
Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP., PLoS One 4(11), 2009
PMID: 19956595

62 References

Daten bereitgestellt von Europe PubMed Central.

Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708

AUTHOR UNKNOWN, 1967

AUTHOR UNKNOWN, 1972
Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial.
Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM., Cancer 72(12), 1993
PMID: 7504576

AUTHOR UNKNOWN, 1995
High-efficiency gene transfer into skeletal muscle mediated by electric pulses.
Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D., Proc. Natl. Acad. Sci. U.S.A. 96(8), 1999
PMID: 10200250
Efficient nonviral cutaneous transfection.
Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW., Mol. Ther. 2(2), 2000
PMID: 10947941
Efficient genetic modification of murine dendritic cells by electroporation with mRNA.
Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, Thielemans K., Cancer Gene Ther. 9(9), 2002
PMID: 12189529

AUTHOR UNKNOWN, 1979

AUTHOR UNKNOWN, 1980
Electro-insertion of xeno-glycophorin into the red blood cell membrane.
Mouneimne Y, Tosi PF, Gazitt Y, Nicolau C., Biochem. Biophys. Res. Commun. 159(1), 1989
PMID: 2493789
The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies.
Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA., Biochim. Biophys. Acta 902(3), 1987
PMID: 3620466
Voltage-induced conductance in human erythrocyte membranes.
Kinosita K Jr, Tsong TY., Biochim. Biophys. Acta 554(2), 1979
PMID: 486454

AUTHOR UNKNOWN, 1979
Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer.
Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV., Biophys. J. 80(4), 2001
PMID: 11259296

AUTHOR UNKNOWN, 1996

AUTHOR UNKNOWN, 1998
Electric field induced transient pores in phospholipid bilayer vesicles.
Teissie J, Tsong TY., Biochemistry 20(6), 1981
PMID: 6261800
The molecular basis of electroporation.
Tieleman DP., BMC Biochem. 5(), 2004
PMID: 15260890
Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF., Phys Rev E Stat Nonlin Soft Matter Phys 71(3 Pt 1), 2005
PMID: 15903466
Molecular mechanism for lipid flip-flops.
Gurtovenko AA, Vattulainen I., J Phys Chem B 111(48), 2007
PMID: 17988118
The effects of gramicidin on electroporation of lipid bilayers.
Troiano GC, Stebe KJ, Raphael RM, Tung L., Biophys. J. 76(6), 1999
PMID: 10354439
Electric field effects on membranes: gramicidin A as a test ground.
Siu SW, Bockmann RA., J. Struct. Biol. 157(3), 2006
PMID: 17116406
Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential.
Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP., J. Am. Chem. Soc. 128(19), 2006
PMID: 16683772
High electrical field effects on cell membranes.
Pliquett U, Joshi RP, Sridhara V, Schoenbach KH., Bioelectrochemistry 70(2), 2006
PMID: 17123870

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 2004
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Simulation of pore formation in lipid bilayers by mechanical stress and electric fields.
Tieleman DP, Leontiadou H, Mark AE, Marrink SJ., J. Am. Chem. Soc. 125(21), 2003
PMID: 12785774
Effect of sodium chloride on a lipid bilayer.
Bockmann RA, Hac A, Heimburg T, Grubmuller H., Biophys. J. 85(3), 2003
PMID: 12944279

AUTHOR UNKNOWN, 1981
Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study.
Bockmann RA, Grubmuller H., Angew. Chem. Int. Ed. Engl. 43(8), 2004
PMID: 14966897

AUTHOR UNKNOWN, 1995

AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 1997

AUTHOR UNKNOWN, 1992

AUTHOR UNKNOWN, 1993

AUTHOR UNKNOWN, 1986

AUTHOR UNKNOWN, 1990

AUTHOR UNKNOWN, 1984

AUTHOR UNKNOWN, 1983

AUTHOR UNKNOWN, 1951

AUTHOR UNKNOWN, 1973

AUTHOR UNKNOWN, 1999
Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl.
Pandit SA, Bostick D, Berkowitz ML., Biophys. J. 84(6), 2003
PMID: 12770880
Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC., Phys Rev E Stat Nonlin Soft Matter Phys 74(2 Pt 1), 2006
PMID: 17025469

AUTHOR UNKNOWN, 1986
Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI., Biochim. Biophys. Acta 940(2), 1988
PMID: 2453213
Membrane electroporation and electromechanical deformation of vesicles and cells.
Neumann E, Kakorin S, Toensing K., Faraday Discuss. (111), 1998
PMID: 10822604
Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations.
Wohlert J, den Otter WK, Edholm O, Briels WJ., J Chem Phys 124(15), 2006
PMID: 16674263
In vivo electroporation using an exponentially enhanced pulse: a new waveform.
Lucas ML, Jaroszeski MJ, Gilbert R, Heller R., DNA Cell Biol. 20(3), 2001
PMID: 11313021

AUTHOR UNKNOWN, 1998

AUTHOR UNKNOWN, 2000
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18469089
PubMed | Europe PMC

Suchen in

Google Scholar