The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana

Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D (2008)
The Plant Journal 56(2): 239-250.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Streitner, CorinnaUniBi; Danisman, SelahattinUniBi; Wehrle, Franziska; Schöning, Jan C.; Alfano, James R.; Staiger, DorotheeUniBi
Abstract / Bemerkung
The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and independent RNA interference lines with reduced levels of AtGRP7, and the closely related AtGRP8 protein, are also late flowering, particularly in short photoperiods. Consistent with the retention of a photoperiodic response, the transcript encoding the key photoperiodic regulator CONSTANS oscillates with a similar pattern in atgrp7-1 and wild-type plants. In both the RNAi lines and in the atgrp7-1 mutant transcript levels for the floral repressor FLC are elevated. Conversely, in transgenic plants ectopically overexpressing AtGRP7, the transition to flowering is accelerated mainly in short days, with a concomitant reduction in FLC abundance. The late-flowering phenotype of the RNAi lines is suppressed by introducing the flc-3 loss-of-function mutation, suggesting that AtGRP7 promotes floral transition, at least partly by downregulating FLC. Furthermore, vernalization overrides the late-flowering phenotype. Retention of both the photoperiodic response and vernalization response are features of autonomous pathway mutants, suggesting that AtGRP7 is a novel member of the autonomous pathway.
Stichworte
autonomous pathway; regulation; Arabidopsis; flowering time; RNA binding protein; circadian clock; post-transcriptional
Erscheinungsjahr
2008
Zeitschriftentitel
The Plant Journal
Band
56
Ausgabe
2
Seite(n)
239-250
ISSN
0960-7412
eISSN
1365-313X
Page URI
https://pub.uni-bielefeld.de/record/1585878

Zitieren

Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal. 2008;56(2):239-250.
Streitner, C., Danisman, S., Wehrle, F., Schöning, J. C., Alfano, J. R., & Staiger, D. (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal, 56(2), 239-250. https://doi.org/10.1111/j.1365-313X.2008.03591.x
Streitner, Corinna, Danisman, Selahattin, Wehrle, Franziska, Schöning, Jan C., Alfano, James R., and Staiger, Dorothee. 2008. “The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana”. The Plant Journal 56 (2): 239-250.
Streitner, C., Danisman, S., Wehrle, F., Schöning, J. C., Alfano, J. R., and Staiger, D. (2008). The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal 56, 239-250.
Streitner, C., et al., 2008. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal, 56(2), p 239-250.
C. Streitner, et al., “The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana”, The Plant Journal, vol. 56, 2008, pp. 239-250.
Streitner, C., Danisman, S., Wehrle, F., Schöning, J.C., Alfano, J.R., Staiger, D.: The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal. 56, 239-250 (2008).
Streitner, Corinna, Danisman, Selahattin, Wehrle, Franziska, Schöning, Jan C., Alfano, James R., and Staiger, Dorothee. “The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana”. The Plant Journal 56.2 (2008): 239-250.

75 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat.
Shi C, Zhao L, Zhang X, Lv G, Pan Y, Chen F., BMC Plant Biol 19(1), 2019
PMID: 30606101
TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I., Plant J 93(1), 2018
PMID: 29086456
Ectopic Expression of Plant RNA Chaperone Offering Multiple Stress Tolerance in E. coli.
Jabeen B, Naqvi SM, Mahmood T, Sultana T, Arif M, Khan F., Mol Biotechnol 59(2-3), 2017
PMID: 28138902
Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development.
Wang Y, Liu A, Li W, Jiang Y, Song S, Li Y, Chen R., PLoS One 12(6), 2017
PMID: 28586360
Structural disorder in plant proteins: where plasticity meets sessility.
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC., Cell Mol Life Sci 74(17), 2017
PMID: 28643166
A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.
He R, Li X, Zhong M, Yan J, Ji R, Li X, Wang Q, Wu D, Sun M, Tang D, Lin J, Li H, Liu B, Liu H, Liu X, Zhao X, Lin C., Plant J 91(5), 2017
PMID: 28608936
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
The link between flowering time and stress tolerance.
Kazan K, Lyons R., J Exp Bot 67(1), 2016
PMID: 26428061
RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.
Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu LJ., Plant Cell 28(1), 2016
PMID: 26721863
AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis.
Mangeon A, Pardal R, Menezes-Salgueiro AD, Duarte GL, de Seixas R, Cruz FP, Cardeal V, Magioli C, Ricachenevsky FK, Margis R, Sachetto-Martins G., PLoS One 11(3), 2016
PMID: 26939065
Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana.
Bouché F, D'Aloia M, Tocquin P, Lobet G, Detry N, Périlleux C., Sci Rep 6(), 2016
PMID: 27352932
The circadian clock and defence signalling in plants.
Sharma M, Bhatt D., Mol Plant Pathol 16(2), 2015
PMID: 25081907
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
A Host KH RNA-Binding Protein Is a Susceptibility Factor Targeted by an RXLR Effector to Promote Late Blight Disease.
Wang X, Boevink P, McLellan H, Armstrong M, Bukharova T, Qin Z, Birch PR., Mol Plant 8(9), 2015
PMID: 25936676
NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops.
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K., Plants (Basel) 4(3), 2015
PMID: 27135336
Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia.
Kippes N, Debernardi JM, Vasquez-Gross HA, Akpinar BA, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J., Proc Natl Acad Sci U S A 112(39), 2015
PMID: 26324889
Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.
Gutierrez-Carbonell E, Lattanzio G, Albacete A, Rios JJ, Kehr J, Abadía A, Grusak MA, Abadía J, López-Millán AF., Proteomics 15(22), 2015
PMID: 26316195
Classification of EA1-box proteins and new insights into their role during reproduction in grasses.
Uebler S, Márton ML, Dresselhaus T., Plant Reprod 28(3-4), 2015
PMID: 26498589
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Löhr B, Streitner C, Steffen A, Lange T, Staiger D., Mol Biol Rep 41(1), 2014
PMID: 24281950
Message ends: RNA 3' processing and flowering time control.
Rataj K, Simpson GG., J Exp Bot 65(2), 2014
PMID: 24363425
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance.
Ortega-Amaro MA, Rodríguez-Hernández AA, Rodríguez-Kessler M, Hernández-Lucero E, Rosales-Mendoza S, Ibáñez-Salazar A, Delgado-Sánchez P, Jiménez-Bremont JF., Front Plant Sci 5(), 2014
PMID: 25653657
Interaction with Cu²⁺ disrupts the RNA binding affinities of RNA recognition motif containing protein.
Qin X, Huang Q, Zhu L, Xiao H, Yao G, Huang W, Zhu R, Hu J, Zhu Y., Biochem Biophys Res Commun 444(2), 2014
PMID: 24434156
Senescence, nutrient remobilization, and yield in wheat and barley.
Distelfeld A, Avni R, Fischer AM., J Exp Bot 65(14), 2014
PMID: 24470467
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res 42(13), 2014
PMID: 24957607
HnRNP-like proteins as post-transcriptional regulators.
Yeap WC, Namasivayam P, Ho CL., Plant Sci 227(), 2014
PMID: 25219311
O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat.
Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K., Nat Commun 5(), 2014
PMID: 25091017
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res 42(15), 2014
PMID: 25104024
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D., Biochem Biophys Res Commun 453(1), 2014
PMID: 25251471
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
Perez-Santángelo S, Schlaen RG, Yanovsky MJ., Brief Funct Genomics 12(1), 2013
PMID: 23165351
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J 32(5), 2013
PMID: 23395902
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Crosstalk between the circadian clock and innate immunity in Arabidopsis.
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H., PLoS Pathog 9(6), 2013
PMID: 23754942
The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation.
Lyons R, Iwase A, Gänsewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K., Sci Rep 3(), 2013
PMID: 24104185
Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.).
Huang YJ, Liu LL, Huang JQ, Wang ZJ, Chen FF, Zhang QX, Zheng BS, Chen M., BMC Genomics 14(), 2013
PMID: 24106755
Soluble and filamentous proteins in Arabidopsis sieve elements.
Batailler B, Lemaître T, Vilaine F, Sanchez C, Renard D, Cayla T, Beneteau J, Dinant S., Plant Cell Environ 35(7), 2012
PMID: 22292537
Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development.
Hong MJ, Kim DY, Kang SY, Kim DS, Kim JB, Seo YW., Mol Biol Rep 39(10), 2012
PMID: 22729884
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris.
Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE., J Exp Bot 62(10), 2011
PMID: 20974738
Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1.
Latrasse D, Germann S, Houba-Hérin N, Dubois E, Bui-Prodhomme D, Hourcade D, Juul-Jensen T, Le Roux C, Majira A, Simoncello N, Granier F, Taconnat L, Renou JP, Gaudin V., PLoS One 6(1), 2011
PMID: 21304947
The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation.
Rinalducci S, Egidi MG, Mahfoozi S, Godehkahriz SJ, Zolla L., J Proteomics 74(5), 2011
PMID: 21320650
Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.).
Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PM., BMC Plant Biol 11(), 2011
PMID: 21342527
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.
Zhang L, Weng W, Guo J., FEBS Lett 585(10), 2011
PMID: 21414314
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J Biol Chem 286(50), 2011
PMID: 22013065
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol Biol Rep 37(2), 2010
PMID: 19672695
Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520
Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.
Wang F, Bai MY, Deng Z, Oses-Prieto JA, Burlingame AL, Lu T, Chong K, Wang ZY., J Integr Plant Biol 52(12), 2010
PMID: 21106006
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol 188(4), 2010
PMID: 20958306
A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis.
Qi Y, Tsuda K, Joe A, Sato M, Nguyen le V, Glazebrook J, Alfano JR, Cohen JD, Katagiri F., Mol Plant Microbe Interact 23(12), 2010
PMID: 20636102
Network news: prime time for systems biology of the plant circadian clock.
McClung CR, Gutiérrez RA., Curr Opin Genet Dev 20(6), 2010
PMID: 20889330
Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl.
Chang IF, Chen PJ, Shen CH, Hsieh TJ, Hsu YW, Huang BL, Kuo CI, Chen YT, Chu HA, Yeh KW, Huang LC., Proteome Sci 8(), 2010
PMID: 21143964
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys J 96(12), 2009
PMID: 19527663
Getting the message across: cytoplasmic ribonucleoprotein complexes.
Bailey-Serres J, Sorenson R, Juntawong P., Trends Plant Sci 14(8), 2009
PMID: 19616989

65 References

Daten bereitgestellt von Europe PubMed Central.

FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T., Science 309(5737), 2005
PMID: 16099979
CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis.
An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G., Development 131(15), 2004
PMID: 15229176
Regulation of flowering time by FVE, a retinoblastoma-associated protein.
Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez-Zapater JM., Nat. Genet. 36(2), 2004
PMID: 14745447
Vernalization requires epigenetic silencing of FLC by histone methylation.
Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C., Nature 427(6970), 2004
PMID: 14712277
In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants
Bechthold, Life Sci. 316(), 1993
A MADS domain gene involved in the transition to flowering in Arabidopsis.
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S., Plant J. 24(5), 2000
PMID: 11123798
Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion
Bünning, Ber. Dtsch. Bot. Ges. 54(), 1936
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis.
Cao S, Jiang L, Song S, Jing R, Xu G., Cell. Mol. Biol. Lett. 11(4), 2006
PMID: 17001447
The quest for florigen: a review of recent progress.
Corbesier L, Coupland G., J. Exp. Bot. 57(13), 2006
PMID: 17030536
FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G., Science 316(5827), 2007
PMID: 17446353
Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR., Plant Physiol. 139(1), 2005
PMID: 16166256
HUA2 is required for the expression of floral repressors in Arabidopsis thaliana.
Doyle MR, Bizzell CM, Keller MR, Michaels SD, Song J, Noh YS, Amasino RM., Plant J. 41(3), 2005
PMID: 15659097
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J., EMBO J. 18(17), 1999
PMID: 10469647
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Regulation of flowering time by histone acetylation in Arabidopsis.
He Y, Michaels SD, Amasino RM., Science 302(5651), 2003
PMID: 14593187
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant.
Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA., Science 274(5288), 1996
PMID: 8864121
FT protein acts as a long-range signal in Arabidopsis.
Jaeger KE, Wigge PA., Curr. Biol. 17(12), 2007
PMID: 17540569
A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.
Koornneef M, Hanhart CJ, van der Veen JH., Mol. Gen. Genet. 229(1), 1991
PMID: 1896021
The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.
Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I., Genes Dev. 14(18), 2000
PMID: 10995392
A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.
Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM., Plant Cell 16(3), 2004
PMID: 14973162
The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC.
Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C., Mol. Cell 28(3), 2007
PMID: 17996704
FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains.
Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C., Cell 89(5), 1997
PMID: 9182761
Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA.
Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C., Plant Cell 14(4), 2002
PMID: 11971142
Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.
Marquardt S, Boss PK, Hadfield J, Dean C., J. Exp. Bot. 57(13), 2006
PMID: 16940039
Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis.
Mathieu J, Warthmann N, Kuttner F, Schmid M., Curr. Biol. 17(12), 2007
PMID: 17540570
Integration of flowering signals in winter-annual Arabidopsis.
Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM., Plant Physiol. 137(1), 2004
PMID: 15618421
Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene.
Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG., Science 285(5433), 1999
PMID: 10477524
It's time to flower: the genetic control of flowering time.
Putterill J, Laurie R, Macknight R., Bioessays 26(4), 2004
PMID: 15057934
Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.
Quesada V, Macknight R, Dean C, Simpson GG., EMBO J. 22(12), 2003
PMID: 12805228
Regulated RNA processing in the control of Arabidopsis flowering.
Quesada V, Dean C, Simpson GG., Int. J. Dev. Biol. 49(5-6), 2005
PMID: 16096981
FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways.
Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ., BMC Plant Biol. 6(), 2006
PMID: 16737527
Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G., Science 288(5471), 2000
PMID: 10834834
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs.
Schomburg FM, Patton DA, Meinke DW, Amasino RM., Plant Cell 13(6), 2001
PMID: 11402170
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945
The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation.
Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES., Plant Cell 11(3), 1999
PMID: 10072403
The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC).
Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES., Proc. Natl. Acad. Sci. U.S.A. 97(7), 2000
PMID: 10716723
Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.
Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y., Cell 119(7), 2004
PMID: 15620353
Arabidopsis, the Rosetta stone of flowering time?
Simpson GG, Dean C., Science 296(5566), 2002
PMID: 11951029
FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition.
Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C., Cell 113(6), 2003
PMID: 12809608
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev. 17(2), 2003
PMID: 12533513
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G., Nature 410(6832), 2001
PMID: 11323677
The Arabidopsis knockout facility at the University of Wisconsin-Madison.
Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S., Plant Physiol. 124(4), 2000
PMID: 11115860
Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G., Science 303(5660), 2004
PMID: 14963328
Construct design for efficient, effective and high-throughput gene silencing in plants.
Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM., Plant J. 27(6), 2001
PMID: 11576441
Integration of spatial and temporal information during floral induction in Arabidopsis.
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D., Science 309(5737), 2005
PMID: 16099980
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18573194
PubMed | Europe PMC

Suchen in

Google Scholar