Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment

Liang P, Kern R, Egelhaaf M (2008)
Journal of Neuroscience 28(44): 11328-11332.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 300.87 KB
Autor*in
Stichworte
neural activity; vision; optic flow; blowfly; spatial discontinuity; motion adaptation
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Neuroscience
Band
28
Ausgabe
44
Seite(n)
11328-11332
ISSN
0270-6474
eISSN
1529-2401
Page URI
https://pub.uni-bielefeld.de/record/1585462

Zitieren

Liang P, Kern R, Egelhaaf M. Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment. Journal of Neuroscience. 2008;28(44):11328-11332.
Liang, P., Kern, R., & Egelhaaf, M. (2008). Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment. Journal of Neuroscience, 28(44), 11328-11332. https://doi.org/10.1523/JNEUROSCI.0203-08.2008
Liang, Pei, Kern, Roland, and Egelhaaf, Martin. 2008. “Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment”. Journal of Neuroscience 28 (44): 11328-11332.
Liang, P., Kern, R., and Egelhaaf, M. (2008). Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment. Journal of Neuroscience 28, 11328-11332.
Liang, P., Kern, R., & Egelhaaf, M., 2008. Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment. Journal of Neuroscience, 28(44), p 11328-11332.
P. Liang, R. Kern, and M. Egelhaaf, “Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment”, Journal of Neuroscience, vol. 28, 2008, pp. 11328-11332.
Liang, P., Kern, R., Egelhaaf, M.: Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment. Journal of Neuroscience. 28, 11328-11332 (2008).
Liang, Pei, Kern, Roland, and Egelhaaf, Martin. “Motion Adaptation Enhances Object-Induced Neural Activity in Three-Dimensional Virtual Environment”. Journal of Neuroscience 28.44 (2008): 11328-11332.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:00Z
MD5 Prüfsumme
5495b9da1628cd998c6db4b724165921


19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar JW, Keleş MF, Lu PM, Zolotova NM, Frye MA., J Neurosci 35(19), 2015
PMID: 25972183
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Neural specializations for small target detection in insects.
Nordström K., Curr Opin Neurobiol 22(2), 2012
PMID: 22244741
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease.
Villalba RM, Smith Y., Front Syst Neurosci 5(), 2011
PMID: 21897810
The role of inhibition in generating and controlling Parkinson's disease oscillations in the Basal Ganglia.
Kumar A, Cardanobile S, Rotter S, Aertsen A., Front Syst Neurosci 5(), 2011
PMID: 22028684
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc Biol Sci 276(1673), 2009
PMID: 19656791

42 References

Daten bereitgestellt von Europe PubMed Central.

Possible principles underlying the transformation of sensory messages
Barlow HB., 1961
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Adaptation without parameter change: Dynamic gain control in motion detection.
Borst A, Flanagin VL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 102(17), 2005
PMID: 15833815
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Flights of learning
Collett TS, Zeil J., 1996
Adaptation-induced plasticity of orientation tuning in adult visual cortex.
Dragoi V, Sharma J, Sur M., Neuron 28(1), 2000
PMID: 11087001
Dynamics of neuronal sensitivity in visual cortex and local feature discrimination.
Dragoi V, Sharma J, Miller EK, Sur M., Nat. Neurosci. 5(9), 2002
PMID: 12161755
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Neural correlates of novelty detection in pulse-type weakly electric fish
Grau HJ, Bastian J., 1986
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen K., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K., 1982
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J. Neurophysiol. 94(3), 2005
PMID: 15917319
Dynamic predictive coding by the retina.
Hosoya T, Baccus SA, Meister M., Nature 436(7047), 2005
PMID: 16001064
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Object detection by relative motion in freely flying flies
Kimmerle B, Egelhaaf M, Srinivasan MV., 1996
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
A survey of active vision in invertebrates
Land MF, Collett TS., 1997
Perception of self-motion from visual flow.
Lappe M, Bremmer F, van den Berg AV ., Trends Cogn. Sci. (Regul. Ed.) 3(9), 1999
PMID: 10461195
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess T, Laughlin SB., 1985
Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex.
Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME., PLoS Biol. 5(2), 2007
PMID: 17253902
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc. Biol. Sci. 272(1578), 2005
PMID: 16191636
Stimulus-specific adaptations in the gaze control system of the barn owl.
Reches A, Gutfreund Y., J. Neurosci. 28(6), 2008
PMID: 18256273
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Adaptive filtering enhances information transmission in visual cortex.
Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD., Nature 439(7079), 2006
PMID: 16495990
Visual navigation in flying insects.
Srinivasan MV, Zhang SW., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605642
Predictive coding: a fresh view of inhibition in the retina.
Srinivasan MV, Laughlin SB, Dubs A., Proc. R. Soc. Lond., B, Biol. Sci. 216(1205), 1982
PMID: 6129637
Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries
Srinivasan MV, Lehrer M, Horridge GA., 1990
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Optic flow is used to control human walking.
Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S., Nat. Neurosci. 4(2), 2001
PMID: 11175884
Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera). I. Description of flights
Zeil J., 1993
Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II. Similarities between orientation and return flights and the use of motion parallax
Zeil J., 1993
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18971474
PubMed | Europe PMC

Suchen in

Google Scholar