Super-resolution optical microscopy resolves network morphology of smart colloidal microgels

Bergmann S, Wrede O, Huser T, Hellweg T (2018)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20(7): 5074-5083.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Abstract
We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Bergmann S, Wrede O, Huser T, Hellweg T. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2018;20(7):5074-5083.
Bergmann, S., Wrede, O., Huser, T., & Hellweg, T. (2018). Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(7), 5074-5083. doi:10.1039/c7cp07648g
Bergmann, S., Wrede, O., Huser, T., and Hellweg, T. (2018). Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20, 5074-5083.
Bergmann, S., et al., 2018. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(7), p 5074-5083.
S. Bergmann, et al., “Super-resolution optical microscopy resolves network morphology of smart colloidal microgels”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 20, 2018, pp. 5074-5083.
Bergmann, S., Wrede, O., Huser, T., Hellweg, T.: Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 20, 5074-5083 (2018).
Bergmann, Stephan, Wrede, Oliver, Huser, Thomas, and Hellweg, Thomas. “Super-resolution optical microscopy resolves network morphology of smart colloidal microgels”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20.7 (2018): 5074-5083.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 29392265
PubMed | Europe PMC

Search this title in

Google Scholar