Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives

Wendisch VF, Mindt M, Perez F (2018)
Appl Microbiol Biotechnol 102(8): 3583-3594.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
Appl Microbiol Biotechnol
Band
102
Ausgabe
8
Seite(n)
3583-3594
ISSN
PUB-ID

Zitieren

Wendisch VF, Mindt M, Perez F. Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives. Appl Microbiol Biotechnol. 2018;102(8):3583-3594.
Wendisch, V. F., Mindt, M., & Perez, F. (2018). Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives. Appl Microbiol Biotechnol, 102(8), 3583-3594. doi:10.1007/s00253-018-8890-z
Wendisch, V. F., Mindt, M., and Perez, F. (2018). Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives. Appl Microbiol Biotechnol 102, 3583-3594.
Wendisch, V.F., Mindt, M., & Perez, F., 2018. Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives. Appl Microbiol Biotechnol, 102(8), p 3583-3594.
V.F. Wendisch, M. Mindt, and F. Perez, “Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives”, Appl Microbiol Biotechnol, vol. 102, 2018, pp. 3583-3594.
Wendisch, V.F., Mindt, M., Perez, F.: Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives. Appl Microbiol Biotechnol. 102, 3583-3594 (2018).
Wendisch, Volker F., Mindt, Melanie, and Perez, Fernando. “Biotechnological production of mono- and diamines using bacteria: recent progress, applications and perspectives”. Appl Microbiol Biotechnol 102.8 (2018): 3583-3594.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619

111 References

Daten bereitgestellt von Europe PubMed Central.

Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.
Akhtar MK, Turner NJ, Jones PR., Proc. Natl. Acad. Sci. U.S.A. 110(1), 2012
PMID: 23248280
Current progress on bio-based polymers and their future trends.
Babu RP, O'Connor K, Seeram R., Prog Biomater 2(1), 2013
PMID: 29470779

A, Catal Rev 27(), 1985
From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
Becker J, Zelder O, Hafner S, Schroder H, Wittmann C., Metab. Eng. 13(2), 2011
PMID: 21241816
Whole-Cell Biocatalysts for Stereoselective C-H Amination Reactions.
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL., Angew. Chem. Int. Ed. Engl. 55(4), 2015
PMID: 26689856
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
Buschke N, Becker J, Schafer R, Kiefer P, Biedendieck R, Wittmann C., Biotechnol J 8(5), 2013
PMID: 23447448
Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine.
Choi H, Kyeong HH, Choi JM, Kim HS., Appl. Microbiol. Biotechnol. 98(17), 2014
PMID: 24706212
Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.
Dhakal R, Bajpai VK, Baek KH., Braz. J. Microbiol. 43(4), 2012
PMID: 24031948
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H., Appl. Microbiol. Biotechnol. 34(5), 1991
PMID: 1369320
In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
Farnberger JE, Lorenz E, Richter N, Wendisch VF, Kroutil W., Microb. Cell Fact. 16(1), 2017
PMID: 28754115
Catabolism of L-lysine by Pseudomonas aeruginosa.
Fothergill JC, Guest JR., J. Gen. Microbiol. 99(1), 1977
PMID: 405455

SP, ACS Catal 7(), 2017
A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
Gand M, Thole C, Muller H, Brundiek H, Bashiri G, Hohne M., J. Biotechnol. 230(), 2016
PMID: 27164259
Polyamines as a chemotaxonomic marker in bacterial systematics.
Hamana K, Matsuzaki S., Crit. Rev. Microbiol. 18(4), 1992
PMID: 1524675

LJ, ACS Catal 7(), 2017

T, ChemCatChem 6(), 2014
Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli.
Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A., AMB Express 3(1), 2013
PMID: 24206923
1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface.
Imao K, Konishi R, Kishida M, Hirata Y, Segawa S, Adachi N, Matsuura R, Tsuge Y, Matsumoto T, Tanaka T, Kondo A., Bioresour. Technol. 245(Pt B), 2017
PMID: 28599919
Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168.
Iwasaki A, Yamada Y, Kizaki N, Ikenaka Y, Hasegawa J., Appl. Microbiol. Biotechnol. 69(5), 2005
PMID: 16003558
Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process.
Joo JC, Oh YH, Yu JH, Hyun SM, Khang TU, Kang KH, Song BK, Park K, Oh MK, Lee SY, Park SJ., Bioresour. Technol. 245(Pt B), 2017
PMID: 28579174
A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Perez-Garcia F, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28522202

O, J Jpn Soc Food Sci Technol Jpn 51(2), 2004
Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum.
Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A., Mol. Microbiol. 5(5), 1991
PMID: 1956296
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Reaction engineering analysis of L-lysine transport by Corynebacterium glutamicum.
Kelle R, Laufer B, Brunzema C, Weuster-Botz D, Kramer R, Wandrey C., Biotechnol. Bioeng. 51(1), 1996
PMID: 18627086
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth Gv, Zelder O, Wittmann C., Metab. Eng. 25(), 2014
PMID: 24831706
Bio-based production of the platform chemical 1,5-diaminopentane.
Kind S, Wittmann C., Appl. Microbiol. Biotechnol. 91(5), 2011
PMID: 21761208
Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus.
Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H., Biol. Pharm. Bull. 27(9), 2004
PMID: 15340213
Whole cell biotransformation for reductive amination reactions.
Klatte S, Lorenz E, Wendisch VF., Bioengineered 5(1), 2013
PMID: 24406456
Redox self-sufficient whole cell biotransformation for amination of alcohols.
Klatte S, Wendisch VF., Bioorg. Med. Chem. 22(20), 2014
PMID: 24894767
Role of L-alanine for redox self-sufficient amination of alcohols.
Klatte S, Wendisch VF., Microb. Cell Fact. 14(), 2015
PMID: 25612558

JI, 2004
The polyamine binding site in inward rectifier K+ channels.
Kurata HT, Marton LJ, Nichols CG., J. Gen. Physiol. 127(5), 2006
PMID: 16606689
gamma-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12.
Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H., J. Biol. Chem. 283(29), 2008
PMID: 18495664
Synthetic redesign of Escherichia coli for cadaverine production from galactose.
Kwak DH, Lim HG, Yang J, Seo SW, Jung GY., Biotechnol Biofuels 10(), 2017
PMID: 28127401
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl. Microbiol. Biotechnol. 99(23), 2015
PMID: 26276544
Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter.
Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, Lu F., J. Ind. Microbiol. Biotechnol. 41(4), 2014
PMID: 24510022
Overexpression of transport proteins improves the production of 5-aminovalerate from l-lysine in Escherichia coli.
Li Z, Xu J, Jiang T, Ge Y, Liu P, Zhang M, Su Z, Gao C, Ma C, Xu P., Sci Rep 6(), 2016
PMID: 27510748
Engineered Escherichia coli for simultaneous utilization of galactose and glucose.
Lim HG, Seo SW, Jung GY., Bioresour. Technol. 135(), 2012
PMID: 23246298
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Perez-Garcia F, Taniguchi H, Wendisch VF., Appl. Microbiol. Biotechnol. 100(19), 2016
PMID: 27350619
Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X., Biotechnol. Appl. Biochem. 63(6), 2016
PMID: 27010514

H, J Am Oil Chem Soc 61(), 1984
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ., Science 349(6255), 2015
PMID: 26404833
Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.
Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF., Microb Biotechnol 8(2), 2015
PMID: 25644214
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.
Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY., Metab. Eng. 16(), 2012
PMID: 23246520
High-level conversion of L-lysine into 5-aminovalerate that can be used for nylon 6,5 synthesis.
Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH., Biotechnol J 9(10), 2014
PMID: 25124937
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Perez-Garcia F, Peters-Wendisch P, Wendisch VF., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27345060
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli.
Pham VD, Somasundaram S, Park SJ, Lee SH, Hong SH., J. Microbiol. Biotechnol. 26(4), 2016
PMID: 26838342
Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa.
Rahman M, Clarke PH., J. Gen. Microbiol. 116(2), 1980
PMID: 6768834
Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440.
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL., J. Bacteriol. 187(21), 2005
PMID: 16237033
Physiological polyamines: simple primordial stress molecules.
Rhee HJ, Kim EJ, Lee JK., J. Cell. Mol. Med. 11(4), 2007
PMID: 17760833
Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862
Redox self-sufficient biocatalyst network for the amination of primary alcohols.
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W., Angew. Chem. Int. Ed. Engl. 51(36), 2012
PMID: 22887645

PN, ChemCatChem 7(), 2015
A subfamily of PLP-dependent enzymes specialized in handling terminal amines.
Schiroli D, Peracchi A., Biochim. Biophys. Acta 1854(9), 2015
PMID: 25770684
Putrescine catabolism is a metabolic response to several stresses in Escherichia coli.
Schneider BL, Hernandez VJ, Reitzer L., Mol. Microbiol. 88(3), 2013
PMID: 23531166
The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L., J. Bacteriol. 184(24), 2002
PMID: 12446648
Biotechnological production of polyamines by bacteria: recent achievements and future perspectives.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 91(1), 2011
PMID: 21552989
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification.
Schrewe M, Julsing MK, Buhler B, Schmid A., Chem Soc Rev 42(15), 2013
PMID: 23475180
Umpolung reactivity in amide and peptide synthesis.
Shen B, Makley DM, Johnston JN., Nature 465(7301), 2010
PMID: 20577205
Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum.
Shen Y, Zhao L, Li Y, Zhang L, Shi G., Biotechnol. Lett. 36(8), 2014
PMID: 24737081
Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY., Microb. Cell Fact. 15(1), 2016
PMID: 27717386
The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli.
Sletta H, Tondervik A, Hakvag S, Aune TE, Nedal A, Aune R, Evensen G, Valla S, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 73(3), 2006
PMID: 17142370
A Novel Putrescine Exporter SapBCDF of Escherichia coli.
Sugiyama Y, Nakamura A, Matsumoto M, Kanbe A, Sakanaka M, Higashi K, Igarashi K, Katayama T, Suzuki H, Kurihara S., J. Biol. Chem. 291(51), 2016
PMID: 27803167
Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli.
Terui Y, Saroj SD, Sakamoto A, Yoshida T, Higashi K, Kurihara S, Suzuki H, Toida T, Kashiwagi K, Igarashi K., Amino Acids 46(3), 2013
PMID: 23719730
Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli.
Tomitori H, Kashiwagi K, Igarashi K., Amino Acids 42(2-3), 2011
PMID: 21796432
Metabolic Engineering toward Sustainable Production of Nylon-6.
Turk SC, Kloosterman WP, Ninaber DK, Kolen KP, Knutova J, Suir E, Schurmann M, Raemakers-Franken PC, Muller M, de Wildeman SM, Raamsdonk LM, van der Pol R, Wu L, Temudo MF, van der Hoeven RA, Akeroyd M, van der Stoel RE, Noorman HJ, Bovenberg RA, Trefzer AC., ACS Synth Biol 5(1), 2015
PMID: 26511532
Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis.
Zhang J, Barajas JF, Burdu M, Wang G, Baidoo EE, Keasling JD., ACS Synth Biol 6(5), 2017
PMID: 28414905

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29520601
PubMed | Europe PMC

Suchen in

Google Scholar