flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry

Lux M, Brinkman RR, Chauve C, Laing A, Lorenc A, Abeler-Dörner L, Hammer B (2018)
Bioinformatics.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Elektronische Veröffentlichung vor dem Druck | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Motivation Identification of cell populations in flow cytometry is a critical part of the analysis and lays the groundwork for many applications and research discovery. The current paradigm of manual analysis is time consuming and subjective. A common goal of users is to replace manual analysis with automated methods that replicate their results. Supervised tools provide the best performance in such a use case, however they require fine parameterization to obtain the best results. Hence, there is a strong need for methods that are fast to setup, accurate and interpretable. Results flowLearn is a semi-supervised approach for the quality-checked identification of cell populations. Using a very small number of manually gated samples, through density alignments it is able to predict gates on other samples with high accuracy and speed. On two state-of-the-art data sets, our tool achieves median(F1)-measures exceeding 0.99 for 31%, and 0.90 for 80% of all analyzed populations. Furthermore, users can directly interpret and adjust automated gates on new sample files to iteratively improve the initial training.
Erscheinungsjahr
Zeitschriftentitel
Bioinformatics
ISSN
eISSN
PUB-ID

Zitieren

Lux M, Brinkman RR, Chauve C, et al. flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics. 2018.
Lux, M., Brinkman, R. R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L., & Hammer, B. (2018). flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics. doi:10.1093/bioinformatics/bty082
Lux, M., Brinkman, R. R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L., and Hammer, B. (2018). flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics.
Lux, M., et al., 2018. flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics.
M. Lux, et al., “flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry”, Bioinformatics, 2018.
Lux, M., Brinkman, R.R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L., Hammer, B.: flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics. (2018).
Lux, Markus, Brinkman, Ryan Remy, Chauve, Cedric, Laing, Adam, Lorenc, Anna, Abeler-Dörner, Lucie, and Hammer, Barbara. “flowLearn: Fast and precise identification and quality checking of cell populations in flow cytometry”. Bioinformatics (2018).

23 References

Daten bereitgestellt von Europe PubMed Central.

Critical assessment of automated flow cytometry data analysis techniques.
Aghaeepour N, Finak G; FlowCAP Consortium; DREAM Consortium, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH, Dougall D, Khodabakhshi AH, Mah P, Obermoser G, Spidlen J, Taylor I, Wuensch SA, Bramson J, Eaves C, Weng AP, Fortuno ES 3rd, Ho K, Kollmann TR, Rogers W, De Rosa S, Dalal B, Azad A, Pothen A, Brandes A, Bretschneider H, Bruggner R, Finck R, Jia R, Zimmerman N, Linderman M, Dill D, Nolan G, Chan C, El Khettabi F, O'Neill K, Chikina M, Ge Y, Sealfon S, Sugar I, Gupta A, Shooshtari P, Zare H, De Jager PL, Jiang M, Keilwagen J, Maisog JM, Luta G, Barbo AA, Majek P, Vilcek J, Manninen T, Huttunen H, Ruusuvuori P, Nykter M, McLachlan GJ, Wang K, Naim I, Sharma G, Nikolic R, Pyne S, Qian Y, Qiu P, Quinn J, Roth A, Meyer P, Stolovitzky G, Saez-Rodriguez J, Norel R, Bhattacharjee M, Biehl M, Bucher P, Bunte K, Di Camillo B, Sambo F, Sanavia T, Trifoglio E, Toffolo G, Dimitrieva S, Dreos R, Ambrosini G, Grau J, Grosse I, Posch S, Guex N, Keilwagen J, Kursa M, Rudnicki W, Liu B, Maienschein-Cline M, Manninen T, Huttunen H, Ruusuvuori P, Nykter M, Schneider P, Seifert M, Vilar JM., Nat. Methods 10(3), 2013
PMID: 23396282
A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.
Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S, Kursa M, Lambrecht BN, Malek M, McLachlan GJ, Qian Y, Qiu P, Saeys Y, Stanton R, Tong D, Vens C, Walkowiak S, Wang K, Finak G, Gottardo R, Mosmann T, Nolan GP, Scheuermann RH, Brinkman RR., Cytometry A 89(1), 2015
PMID: 26447924
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
Amir el-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D., Nat. Biotechnol. 31(6), 2013
PMID: 23685480
Reconstructing cell cycle and disease progression using deep learning.
Eulenberg P, Kohler N, Blasi T, Filby A, Carpenter AE, Rees P, Theis FJ, Wolf FA., Nat Commun 8(1), 2017
PMID: 28878212
Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium.
Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, Raddassi K, Devine L, Obermoser G, Pekalski ML, Pontikos N, Diaz A, Heck S, Villanova F, Terrazzini N, Kern F, Qian Y, Stanton R, Wang K, Brandes A, Ramey J, Aghaeepour N, Mosmann T, Scheuermann RH, Reed E, Palucka K, Pascual V, Blomberg BB, Nestle F, Nussenblatt RB, Brinkman RR, Gottardo R, Maecker H, McCoy JP., Sci Rep 6(), 2016
PMID: 26861911

Friedman, 2001
Per-channel basis normalization methods for flow cytometry data.
Hahne F, Khodabakhshi AH, Bashashati A, Wong CJ, Gascoyne RD, Weng AP, Seyfert-Margolis V, Bourcier K, Asare A, Lumley T, Gentleman R, Brinkman RR., Cytometry A 77(2), 2010
PMID: 19899135
An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, Carpenter AE, Filby A., Methods 112(), 2016
PMID: 27594698

Keogh, 2001
Fast bayesian optimization of machine learning hyperparameters on large datasets
Klein, Proceedings of Machine Learning Research 54(), 2016
Thinking outside the gate: single-cell assessments in multiple dimensions
Kvistborg, Immunity 42(), 2015
Gating mass cytometry data by deep learning.
Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR, Kluger Y., Bioinformatics 33(21), 2017
PMID: 29036374

Lisboa, 2013
The end of gating? An introduction to automated analysis of high dimensional cytometry data.
Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B., Eur. J. Immunol. 46(1), 2015
PMID: 26548301
flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification.
Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R, Brinkman RR., Bioinformatics 31(4), 2014
PMID: 25378466
Computational flow cytometry: helping to make sense of high-dimensional immunology data.
Saeys Y, Van Gassen S, Lambrecht BN., Nat. Rev. Immunol. 16(7), 2016
PMID: 27320317

Shapiro, 2005

Silverman, 1986

Upton, 1996
Accelerating t-sne using tree-based algorithms
Van, J. Mach. Learn. Res 15(), 2014
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data.
Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, Saeys Y., Cytometry A 87(7), 2015
PMID: 25573116

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29462241
PubMed | Europe PMC

Suchen in

Google Scholar