Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors

Obradović L (2018) Center for Mathematical Economics Working Papers; 580.
Bielefeld: Center for Mathematical Economics.

Download
OA 439.84 KB
Diskussionspapier | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
Abstract / Bemerkung
We consider a robust version of the full information best choice problem (Gilbert and Mosteller (1966)): there is ambiguity (represented by a set of priors) about the measure driving the observed process. We solve the problem under a very general class of multiple priors in the setting of Riedel (2009). As in the classical case, it is optimal to stop if the current observation is a running maximum that exceeds certain thresholds. We characterize the decreasing sequence of thresholds, as well as the (history dependent) minimizing measure. We introduce locally constant ambiguity neighborhood (LCAn) which has connections to coherent risk measures. Sensitivity analysis is performed using LCAn and exponential neighborhood from Riedel (2009).
Erscheinungsjahr
Band
580
Seite
39
ISSN
PUB-ID

Zitieren

Obradović L. Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors. Center for Mathematical Economics Working Papers. Vol 580. Bielefeld: Center for Mathematical Economics; 2018.
Obradović, L. (2018). Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors (Center for Mathematical Economics Working Papers, 580). Bielefeld: Center for Mathematical Economics.
Obradović, L. (2018). Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors. Center for Mathematical Economics Working Papers, 580, Bielefeld: Center for Mathematical Economics.
Obradović, L., 2018. Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors, Center for Mathematical Economics Working Papers, no.580, Bielefeld: Center for Mathematical Economics.
L. Obradović, Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors, Center for Mathematical Economics Working Papers, vol. 580, Bielefeld: Center for Mathematical Economics, 2018.
Obradović, L.: Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors. Center for Mathematical Economics Working Papers, 580. Center for Mathematical Economics, Bielefeld (2018).
Obradović, Lazar. Robust Maximum Detection: Full Information Best Choice Problem under Multiple Priors. Bielefeld: Center for Mathematical Economics, 2018. Center for Mathematical Economics Working Papers. 580.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-01-22T14:34:49Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar