Formation of a transient amorphous solid in low density aqueous charged sphere suspensions

Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T (2017)

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ;
Abstract / Bemerkung
Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.


Niu R, Heidt S, Sreij R, Dekker RI, Hofmann M, Palberg T. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. SCIENTIFIC REPORTS. 2017;7: 17044.
Niu, R., Heidt, S., Sreij, R., Dekker, R. I., Hofmann, M., & Palberg, T. (2017). Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. SCIENTIFIC REPORTS, 7, 17044. doi:10.1038/s41598-017-17106-6
Niu, R., Heidt, S., Sreij, R., Dekker, R. I., Hofmann, M., and Palberg, T. (2017). Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. SCIENTIFIC REPORTS 7:17044.
Niu, R., et al., 2017. Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. SCIENTIFIC REPORTS, 7: 17044.
R. Niu, et al., “Formation of a transient amorphous solid in low density aqueous charged sphere suspensions”, SCIENTIFIC REPORTS, vol. 7, 2017, : 17044.
Niu, R., Heidt, S., Sreij, R., Dekker, R.I., Hofmann, M., Palberg, T.: Formation of a transient amorphous solid in low density aqueous charged sphere suspensions. SCIENTIFIC REPORTS. 7, : 17044 (2017).
Niu, Ran, Heidt, Sabrina, Sreij, Ramsia, Dekker, Riande I., Hofmann, Maximilian, and Palberg, Thomas. “Formation of a transient amorphous solid in low density aqueous charged sphere suspensions”. SCIENTIFIC REPORTS 7 (2017): 17044.

136 References

Daten bereitgestellt von Europe PubMed Central.

Crystallization in three- and two-dimensional colloidal suspensions.
Gasser U., J Phys Condens Matter 21(20), 2009
PMID: 21825507

Colloidal Glasses
Pusey PN., 2008
The physics of the colloidal glass transition.
Hunter GL, Weeks ER., Rep Prog Phys 75(6), 2012
PMID: 22790649
Colloidal particles: crystals, glasses, and gels
Lu P, Weitz DA., 2013
Dynamics of colloidal glasses and gels.
Joshi YM., Annu Rev Chem Biomol Eng 5(), 2014
PMID: 24655137
The role of local structure in dynamical arrest
Royall CP, Williams SR., 2015
Deconstructing the glass transition through critical experiments on colloids
Gokhale S, Sood AK, Ganapathy R., 2016
Introduction to the colloidal glass transition
Weeks ER., 2017
Relaxation processes in supercooled liquids
Götze W, Sjögren L., 1992
Critical-like behaviour of glass-forming liquids.
Tanaka H, Kawasaki T, Shintani H, Watanabe K., Nat Mater 9(4), 2010
PMID: 20173749
The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment
Tarjus G, Kivelson SA, Nussinov Z, Viot P., 2005
Dynamics on the way to forming glass: bubbles in space-time.
Chandler D, Garrahan JP., Annu Rev Phys Chem 61(), 2010
PMID: 20055676
Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids
Kob W, Roldán-Vargas S, Berthier L., 2012
Bernal’s road to random packing and the structure of liquids
Finney JL., 2013
Colloquium: random first order transition theory concepts in biology and physics
Kirkpatrick TR, Thirumalai D., 2015
Phase behaviour of concentrated suspensions of nearly hard colloidal spheres
Pusey PN, van W., 1986
The glass transition in polymer-micronetwork colloids
Bartsch E., 1995
Measurements of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition
van W, Mortensen TC, Williams SR, Müller J., 1998
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition.
Brambilla G, El Masri D, Pierno M, Berthier L, Cipelletti L, Petekidis G, Schofield AB., Phys. Rev. Lett. 102(8), 2009
PMID: 19257755
Correlation between dynamical heterogeneities and structural heterogeneities in colloidal hard sphere suspensions
Golde S, Palberg T, Schöpe HJ., 2016
Multiple glassy states in a simple model system.
Pham KN, Puertas AM, Bergenholtz J, Egelhaaf SU, Moussaid A, Pusey PN, Schofield AB, Cates ME, Fuchs M, Poon WC., Science 296(5565), 2002
PMID: 11935020
Complete phase diagram of a charged colloidal system: A synchro- tron x-ray scattering study.
Sirota EB, Ou-Yang HD, Sinha SK, Chaikin PM, Axe JD, Fujii Y., Phys. Rev. Lett. 62(13), 1989
PMID: 10039696
Aging of a colloidal “Wigner” glass
Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J., 1998
& Hempelmann, R. The glass transition of charged and hard sphere silica colloids
Beck C, Härtl W., 1999
Confined glassy dynamics at grain boundaries in colloidal crystals.
Nagamanasa KH, Gokhale S, Ganapathy R, Sood AK., Proc. Natl. Acad. Sci. U.S.A. 108(28), 2011
PMID: 21705662
Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former
Nagamanasa KH, Gokhale S, Sood AK, Ganapathy R., 2015
Crystallization of hard-sphere colloids in microgravity
Zhu J., 1997
To make a glass – avoid the crystal
Palberg T., 2016
Strong geometric frustration in model glassformers
Royall CP, Malins A, Dunleavy AJ, Pinney R., 2015
Structural ordering in colloidal suspensions
Sood AK., 1991
Colloids as model systems for metals and alloys: a case study of crystallization
Herlach DM., 2014
Gravity-induced aging in glasses of colloidal hard spheres.
Simeonova NB, Kegel WK., Phys. Rev. Lett. 93(3), 2004
PMID: 15323835
Effect of size polydispersity on the crystal-fluid and crystal-glass transition in hard-core repulsive Yukawa systems.
van der Linden MN, van Blaaderen A, Dijkstra M., J Chem Phys 138(11), 2013
PMID: 23534658
A Multipurpose Instrument To Measure the Vitreous Properties of Charged Colloidal Solids.
Schope HJ, Palberg T., J Colloid Interface Sci 234(1), 2001
PMID: 11161502
Elastic properties of colloidal crystals and glasses
Lindsay HM, Chaikin PM., 1982
The split in the second peak in the structure factor of binary colloidal suspensions: glass like order
Kesavamoorthy R, Sood AK, Tata BVR, Arora AK., 1988
The glass transition of charged polymer colloids
Härtl W, Versmold H, Zhang-Heider X., 1995
Phase diagram of alloy crystal in the exhaustively deionized suspensions of binary mixtures of colloidal spheres
Okubo T, Fujita H., 1996
Frustration of structural fluctuations upon equilibration of shear melts
Schöpe HJ, Palberg T., 2002
Nonlocal cancellation of dispersive broadening in Mach-Zehnder interferometers.
Larchuk TS, Teich MC, Saleh BE., Phys. Rev., A 52(5), 1995
PMID: 9912731
Brownian dynamics simulation of dense binary colloidal mixtures. II
Sanyal S, Sood AK., 1995
Liquid-glass transition phase diagram for concentrated charge-stabilized colloids
Lai SK, Ma JW, van W, Snook IK., 1997
Relaxation dynamics in dense binary colloidal mixtures: Brownian dynamics simulations
Sanyal S, Sood AK., 1998
Low-density ionic glass
Bosse J, Wilke SD., 1998
Relaxation of a supercooled low-density coulomb fluid
Wilke SD, Bosse J., 1999
Liquid-glass transition in charge-stabilized colloidal dispersions
Lai SK, Wang GF, Peng WP., 2000
Liquid-glass re-entrant behavior in a charge-stabilized colloidal dispersion
Wang GF, Lai SK., 2002
Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: aging and gelation.
Tanaka H, Jabbari-Farouji S, Meunier J, Bonn D., Phys Rev E Stat Nonlin Soft Matter Phys 71(2 Pt 1), 2005
PMID: 15783324
Multiple nonergodic disordered states in Laponite suspensions: a phase diagram.
Jabbari-Farouji S, Tanaka H, Wegdam GH, Bonn D., Phys Rev E Stat Nonlin Soft Matter Phys 78(6 Pt 1), 2008
PMID: 19256839
Numerical investigation of glassy dynamics in low-density systems.
Zaccarelli E, Andreev S, Sciortino F, Reichman DR., Phys. Rev. Lett. 100(19), 2008
PMID: 18518461
A fresh look at the Laponite phase diagram
Ruzicka B, Zaccarelli E., 2011
Manifestation of random first-order transition theory in Wigner glasses.
Kang H, Kirkpatrick TR, Thirumalai D., Phys Rev E Stat Nonlin Soft Matter Phys 88(4), 2013
PMID: 24229173
Glass-transition properties of Yukawa potentials: from charged point particles to hard spheres.
Yazdi A, Ivlev A, Khrapak S, Thomas H, Morfill GE, Lowen H, Wysocki A, Sperl M., Phys Rev E Stat Nonlin Soft Matter Phys 89(6), 2014
PMID: 25019902
Ergodic to non-ergodic transition in low concentration Laponite
Ruzicka B, Zulian L, Ruocco G., 2004
Routes to gelation in a clay suspension.
Ruzicka B, Zulian L, Ruocco G., Phys. Rev. Lett. 93(25), 2004
PMID: 15697952
Sheared colloidal suspensions
Ackerson BJ, Clark NA., 1983
The experimental phase diagram of charged colloidal suspensions
Monovoukas Y, Gast AP., 1989
Phase transitions in colloidal suspensions
Ackerson BJ., 1990
Giant colloidal single crystals of polystyrene and silica spheres in deionized suspensions
Okubo T., 1994
Video microscopy of monodisperse colloidal systems
Murray CA, Grier DA., 1996
Consistence of the mean field description of charged colloidal crystal properties
Wette P, Schöpe HJ., 2006
Communications: Complete description of re-entrant phase behavior in a charge variable colloidal model system.
Wette P, Klassen I, Holland-Moritz D, Herlach DM, Schope HJ, Lorenz N, Reiber H, Palberg T, Roth SV., J Chem Phys 132(13), 2010
PMID: 20387914


Mean-field theory for the three-dimensional Coulomb glass
Müller M, Pankov S., 2007
Electrostatic correlations: from plasma to biology
Levin Y., 2002
Qualitative characterisation of effective interactions of charged spheres on different levels of organisation using Alexander´s renormalised charge as reference
Shapran L., 2005
Laponite: aging and shear rejuvenation of a colloidal glass.
Bonn D, Tanase S, Abou B, Tanaka H, Meunier J., Phys. Rev. Lett. 89(1), 2002
PMID: 12097053
Slow dynamics, aging, and crystallization of multiarm star glasses.
Stiakakis E, Wilk A, Kohlbrecher J, Vlassopoulos D, Petekidis G., Phys Rev E Stat Nonlin Soft Matter Phys 81(2 Pt 1), 2010
PMID: 20365516
Phase diagram and dynamics of Yukawa systems
Robbins MO, Kremer K, Grest GS., 1988
Crystallisation kinetics of repulsive colloidal spheres
Palberg T., 1999
Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients.
Reinmuller A, Oguz EC, Messina R, Lowen H, Schope HJ, Palberg T., J Chem Phys 136(16), 2012
PMID: 22559494
Polymer-enforced crystallization of a eutectic binary hard sphere mixture
Kozina A, Sagawe D, Diaz-Leyva P, Bartsch E, Palberg T., 2012
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function.
Kob W, Andersen HC., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(5), 1995
PMID: 9963176
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture. II. Intermediate scattering function and dynamic susceptibility.
Kob W, Andersen HC., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 52(4), 1995
PMID: 9963886
Phase behaviour of deionized binary mixtures of charged colloidal spheres.
Lorenz NJ, Schope HJ, Reiber H, Palberg T, Wette P, Klassen I, Holland-Moritz D, Herlach D, Okubo T., J Phys Condens Matter 21(46), 2009
PMID: 21715880
Triple point of Yukawa systems
Hamaguchi S, Farouki RT, Dubin DHE., 1997
Supercooled liquid dynamics for the charged hard-sphere model.
Lai SK, Chang SY., Phys. Rev., B Condens. Matter 51(18), 1995
PMID: 9978076
Conductivity of deionised two-component colloidal suspensions
Wette P, Schöpe HJ, Biehl R, Palberg T., 2001
Freezing transition for colloids with adjustable charge: A test of charge renormalization.
Palberg T, Monch W, Bitzer F, Piazza R, Bellini T., Phys. Rev. Lett. 74(22), 1995
PMID: 10058536
Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering.
Hornfeck W, Menke D, Forthaus M, Subatzus S, Franke M, Schope HJ, Palberg T, Perlich J, Herlach D., J Chem Phys 141(21), 2014
PMID: 25481168
Small changes in particle-size distribution dramatically delay and enhance nucleation in hard sphere colloidal suspensions.
Schope HJ, Bryant G, van Megen W., Phys Rev E Stat Nonlin Soft Matter Phys 74(6 Pt 1), 2006
PMID: 17280031
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition
Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA., Science 287(5453), 2000
PMID: 10649991
Spatially heterogeneous dynamics in supercooled liquids.
Ediger MD., Annu Rev Phys Chem 51(), 2000
PMID: 11031277
Spatially-resolved heterogeneous dynamics in a strong colloidal gel [corrected].
Buzzaccaro S, Alaimo MD, Secchi E, Piazza R., J Phys Condens Matter 27(19), 2015
PMID: 25924184
Glass transition thermodynamics and kinetics
Stillinger FH, Debenedetti PG., 2013
Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities.
Sentjabrskaja T, Chaudhuri P, Hermes M, Poon WC, Horbach J, Egelhaaf SU, Laurati M., Sci Rep 5(), 2015
PMID: 26153523
Medium-range structural order in covalent amorphous solids
Elliott SR., 1991
Structurally determined Brownian dynamics of ordered colloidal suspensions
Simon R, Palberg T, Leiderer P., 1993
Frustration on the way to crystallization in glass
Shintani H, Tanaka H., 2006
Two-step crystallization kinetics in colloidal hard-sphere systems.
Schope HJ, Bryant G, van Megen W., Phys. Rev. Lett. 96(17), 2006
PMID: 16712312
Precursor-mediated crystallization process in suspensions of hard spheres.
Schilling T, Schope HJ, Oettel M, Opletal G, Snook I., Phys. Rev. Lett. 105(2), 2010
PMID: 20867715
Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization
Tan P, Xu N, Xu L., 2014
Crystal nucleation as the ordering of multiple order parameters.
Russo J, Tanaka H., J Chem Phys 145(21), 2016
PMID: 28799404
Nucleation: theory and applications to protein solutions and colloidal suspensions
Sear RP., 2007
Nucleation rates and induction times during colloidal crystallization: links between models and experiments.
Dixit NM, Zukoski CF., Phys Rev E Stat Nonlin Soft Matter Phys 66(5 Pt 1), 2002
PMID: 12513493
Nonclassical pathways of crystallization in colloidal systems
Russo J, Tanaka H., 2016
Independent ion migration in suspensions of strongly interacting charged colloidal spheres
Hessinger D, Evers M, Palberg T., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61(5B), 2000
PMID: 11031602
Experimental determination of effective charges in aqueous suspensions of colloidal spheres
Wette P, Schöpe HJ, Palberg T., 2003
Macroion shielding and state dependent pair potentials in colloidal suspensions
Klein R, Grünberg HHv, Bechinger C, Brunner M, Lobashkin V., 2002
Glassy carbon as an absolute intensity calibration standard for small-angle scattering
Zhang F., 2010
SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions.
Breßler I, Kohlbrecher J, Thunemann AF., J Appl Crystallogr 48(Pt 5), 2015
PMID: 26500467
Determination of the shear modulus of colloidal solids with high accuracy
Palberg T., 1994
Resonant stick-slip motion in a colloidal crystal
Palberg T, Streicher K., 1994
Response of the elastic properties of colloidal crystals to phase transitions and morphological changes
Schöpe HJ, Decker T, Palberg T., 1998
Acoustic shear waves in colloidal crystals
Joanny JF., 1979

The elastic behaviour of a crystalline aggregate
Hill R., 1952
A vibrational approach to the theory of the elastic behaviour of polycrystals
Hashin Z, Shtrikman S., 1962
Elastic constants of polycrystals
Zeller R, Dederichs PH., 1973
Suppression of multiple scattering by photon cross-correlation techniques
Pusey PN., 1999
Dynamic light scattering by non-ergodic media
Pusey PN, van W., 1989
Nonergodicity and light scattering from polymer gels.
Xue J, Pine DJ, Milner ST, Wu X, Chaikin PM., Phys. Rev., A 46(10), 1992
PMID: 9907964
Light scattering with a CCD camera
Wong APY, Wiltzius P., 1993
Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes
Kirsch S, Frenz V, Schärtl W, Bartsch E, Sillescu H., 1996
Probing slow fluctuations in nonergodic systems: interleaved sampling technique
Müller J, Palberg T., 1996
Ultralow-angle dynamic light scattering with a charge coupled device camera based multispeckle, multitau correlator
Cipelletti L, Weitz DA., 1999
Ensemble-averaging in dynamic light scattering by an echo technique
Pham KN, Egelhaaf SU, Moussaïd A, Pusey PN., 2004
Space-resolved dynamic light scattering probing inhomogeneous dynamics in soft matter
Golde S, Franke M, Schöpe HJ., 2013
Multiple-scattering-free light scattering spectroscopy with mode selectivity
Takagi S, Tanaka H., 2010
An empirical correction for moderate multiple scattering in super-heterodyne light scattering.
Botin D, Mapa LM, Schweinfurth H, Sieber B, Wittenberg C, Palberg T., J Chem Phys 146(20), 2017
PMID: 28571383


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29213089
PubMed | Europe PMC

Suchen in

Google Scholar