Thermal Simulations, Open Boundary Conditions and Switches

Burnier Y, Florio A, Kaczmarek O, Mazur L (2017)
In: 35th International Symposium on Lattice Field Theory (Lattice 2017).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Englisch
Autor
; ; ;
Abstract / Bemerkung
$SU(N)$ gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by L\"uscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.
Erscheinungsjahr
Titel des Konferenzbandes
35th International Symposium on Lattice Field Theory (Lattice 2017)
Konferenz
35th International Symposium on Lattice Field Theory (Lattice 2017)
Konferenzort
Granada, Spain
Konferenzdatum
2017-06-18 – 2017-06-24
PUB-ID

Zitieren

Burnier Y, Florio A, Kaczmarek O, Mazur L. Thermal Simulations, Open Boundary Conditions and Switches. In: 35th International Symposium on Lattice Field Theory (Lattice 2017). 2017.
Burnier, Y., Florio, A., Kaczmarek, O., & Mazur, L. (2017). Thermal Simulations, Open Boundary Conditions and Switches. 35th International Symposium on Lattice Field Theory (Lattice 2017)
Burnier, Y., Florio, A., Kaczmarek, O., and Mazur, L. (2017). “Thermal Simulations, Open Boundary Conditions and Switches” in 35th International Symposium on Lattice Field Theory (Lattice 2017).
Burnier, Y., et al., 2017. Thermal Simulations, Open Boundary Conditions and Switches. In 35th International Symposium on Lattice Field Theory (Lattice 2017).
Y. Burnier, et al., “Thermal Simulations, Open Boundary Conditions and Switches”, 35th International Symposium on Lattice Field Theory (Lattice 2017), 2017.
Burnier, Y., Florio, A., Kaczmarek, O., Mazur, L.: Thermal Simulations, Open Boundary Conditions and Switches. 35th International Symposium on Lattice Field Theory (Lattice 2017). (2017).
Burnier, Yannis, Florio, Adrien, Kaczmarek, Olaf, and Mazur, Lukas. “Thermal Simulations, Open Boundary Conditions and Switches”. 35th International Symposium on Lattice Field Theory (Lattice 2017). 2017.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1710.06472

Inspire: 1631338

Suchen in

Google Scholar