Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

Wang Z, Popolan-Vaida DM, Chen B, Moshammer K, Mohamed SY, Wang H, Sioud S, Raji MA, Kohse-Höinghaus K, Hansen N, Dagaut P, et al. (2017)
Proceedings of the National Academy of Sciences 114(50): 13102-13107.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Erscheinungsjahr
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
114
Zeitschriftennummer
50
Seite
13102-13107
PUB-ID

Zitieren

Wang Z, Popolan-Vaida DM, Chen B, et al. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences. 2017;114(50):13102-13107.
Wang, Z., Popolan-Vaida, D. M., Chen, B., Moshammer, K., Mohamed, S. Y., Wang, H., Sioud, S., et al. (2017). Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences, 114(50), 13102-13107. doi:10.1073/pnas.1707564114
Wang, Z., Popolan-Vaida, D. M., Chen, B., Moshammer, K., Mohamed, S. Y., Wang, H., Sioud, S., Raji, M. A., Kohse-Höinghaus, K., Hansen, N., et al. (2017). Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences 114, 13102-13107.
Wang, Z., et al., 2017. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences, 114(50), p 13102-13107.
Z. Wang, et al., “Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds”, Proceedings of the National Academy of Sciences, vol. 114, 2017, pp. 13102-13107.
Wang, Z., Popolan-Vaida, D.M., Chen, B., Moshammer, K., Mohamed, S.Y., Wang, H., Sioud, S., Raji, M.A., Kohse-Höinghaus, K., Hansen, N., Dagaut, P., Leone, S.R., Sarathy, S.M.: Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences. 114, 13102-13107 (2017).
Wang, Zhandong, Popolan-Vaida, Denisia M., Chen, Bingjie, Moshammer, Kai, Mohamed, Samah Y., Wang, Heng, Sioud, Salim, Raji, Misjudeen A., Kohse-Höinghaus, Katharina, Hansen, Nils, Dagaut, Philippe, Leone, Stephen R., and Sarathy, S. Mani. “Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds”. Proceedings of the National Academy of Sciences 114.50 (2017): 13102-13107.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Atmospheric autoxidation is increasingly important in urban and suburban North America.
Praske E, Otkjær RV, Crounse JD, Hethcox JC, Stoltz BM, Kjaergaard HG, Wennberg PO., Proc Natl Acad Sci U S A 115(1), 2018
PMID: 29255042
Kinetics in the real world: linking molecules, processes, and systems.
Kohse-Höinghaus K, Troe J, Grabow JU, Olzmann M, Friedrichs G, Hungenberg KD., Phys Chem Chem Phys 20(16), 2018
PMID: 29616689

45 References

Daten bereitgestellt von Europe PubMed Central.


Calvert JG, Derwent RG, Orlando JJ, Tyndall GS, Wallington TJ., 2008
Formation of secondary organic aerosols through photooxidation of isoprene.
Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W., Science 303(5661), 2004
PMID: 14976309
Inhibition of the autoxidation of organic substances in the liquid phase
Ingold KU., 1961
Mechanisms for the autoxidation of polyunsaturated lipids
Porter NA., 1986
Chemical aspects of the autoignition of hydrocarbon-air mixtures
Cox RA, Cole JA., 1985
Liquid-phase autoxidation of organic compounds at elevated temperatures. 1. The stirred flow reactor technique and analysis of primary products from n-hexadecane autoxidation at 120-180.degree.C
Jensen RK, Korcek S, Mahoney LR, Zinbo M., 1979
New pathways for formation of acids and carbonyl products in low-temperature oxidation: the Korcek decomposition of γ-ketohydroperoxides.
Jalan A, Alecu IM, Meana-Paneda R, Aguilera-Iparraguirre J, Yang KR, Merchant SS, Truhlar DG, Green WH., J. Am. Chem. Soc. 135(30), 2013
PMID: 23862563
Reactivity trends within alkoxy radical reactions responsible for chain branching.
Davis AC, Francisco JS., J. Am. Chem. Soc. 133(45), 2011
PMID: 21955032
A large source of low-volatility secondary organic aerosol.
Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir IH, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurten T, Nielsen LB, Jorgensen S, Kjaergaard HG, Canagaratna M, Maso MD, Berndt T, Petaja T, Wahner A, Kerminen VM, Kulmala M, Worsnop DR, Wildt J, Mentel TF., Nature 506(7489), 2014
PMID: 24572423
Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.
Jokinen T, Berndt T, Makkonen R, Kerminen VM, Junninen H, Paasonen P, Stratmann F, Herrmann H, Guenther AB, Worsnop DR, Kulmala M, Ehn M, Sipila M., Proc. Natl. Acad. Sci. U.S.A. 112(23), 2015
PMID: 26015574
Hydrocarbons
Pollard RT., 1977
Negative temperature-coefficient of reaction rate during hydrocarbon oxidation
Griffiths JF., 1969
Low temperature oxidation, engine knock
Warnatz J, Maas U, Dibble RW., 1999
Kinetics of elementary reactions in low-temperature autoignition chemistry
Zádor J, Taatjes CA, Fernandes RX., 2011
Additional chain-branching pathways in the low-temperature oxidation of branched alkanes
Wang Z., 2016
New insights into the low-temperature oxidation of 2-methylhexane
Wang Z., 2017
The formation of highly oxidized multifunctional products in the ozonolysis of cyclohexene.
Rissanen MP, Kurten T, Sipila M, Thornton JA, Kangasluoma J, Sarnela N, Junninen H, Jorgensen S, Schallhart S, Kajos MK, Taipale R, Springer M, Mentel TF, Ruuskanen T, Petaja T, Worsnop DR, Kjaergaard HG, Ehn M., J. Am. Chem. Soc. 136(44), 2014
PMID: 25283472
Hydroxyl radical-induced formation of highly oxidized organic compounds.
Berndt T, Richters S, Jokinen T, Hyttinen N, Kurten T, Otkjær RV, Kjaergaard HG, Stratmann F, Herrmann H, Sipila M, Kulmala M, Ehn M., Nat Commun 7(), 2016
PMID: 27910849
Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields.
D'Ambro EL, Moller KH, Lopez-Hilfiker FD, Schobesberger S, Liu J, Shilling JE, Lee BH, Kjaergaard HG, Thornton JA., Environ. Sci. Technol. 51(9), 2017
PMID: 28388039
Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.
Riccobono F, Schobesberger S, Scott CE, Dommen J, Ortega IK, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne EM, Duplissy J, Ehrhart S, Flagan RC, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kurten A, Kvashin AN, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petaja T, Praplan AP, Santos FD, Schallhart S, Seinfeld JH, Sipila M, Spracklen DV, Stozhkov Y, Stratmann F, Tome A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner PE, Weingartner E, Wex H, Wimmer D, Carslaw KS, Curtius J, Donahue NM, Kirkby J, Kulmala M, Worsnop DR, Baltensperger U., Science 344(6185), 2014
PMID: 24833386
Rapid autoxidation forms highly oxidized RO2 radicals in the atmosphere.
Jokinen T, Sipila M, Richters S, Kerminen VM, Paasonen P, Stratmann F, Worsnop D, Kulmala M, Ehn M, Herrmann H, Berndt T., Angew. Chem. Int. Ed. Engl. 53(52), 2014
PMID: 25354339
Autoxidation of organic compounds in the atmosphere
Crounse JD, Nielsen LB, Jørgensen S, Kjaergaard HG, Wennberg PO., 2013
Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry
Qi F., 2013
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Hoinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew. Chem. Int. Ed. Engl. 49(21), 2010
PMID: 20446278
Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether.
Moshammer K, Jasper AW, Popolan-Vaida DM, Lucassen A, Dievart P, Selim H, Eskola AJ, Taatjes CA, Leone SR, Sarathy SM, Ju Y, Dagaut P, Kohse-Hoinghaus K, Hansen N., J Phys Chem A 119(28), 2015
PMID: 25695304
Quantification of the keto-hydroperoxide (HOOCHOCHO) and other elusive intermediates during low-temperature oxidation of dimethyl ether
Moshammer K., 2016
Atmospheric pressure photoionization mass spectrometry.
Raffaelli A, Saba A., Mass Spectrom Rev 22(5), 2003
PMID: 12949917
The Orbitrap: a new mass spectrometer.
Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R., J Mass Spectrom 40(4), 2005
PMID: 15838939
n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine
Wang Z., 2018
The ethylperoxy radical: Its ultraviolet spectrum, self-reaction, and reaction with hydroperoxy, each studied as a function of temperature
Fenter FF, Catoire V, Lesclaux R, Lightfoot PD., 1993
Experimental confirmation of the low-temperature oxidation scheme of alkanes.
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Angew. Chem. Int. Ed. Engl. 49(18), 2010
PMID: 20391420
Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry
Hansen N, Cool TA, Westmoreland PR, Kohse-Höinghaus K., 2009
Improved kinetic model of the low-temperature oxidation of n-heptane
Pelucchi M., 2014
Carbon radicals. Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH).
Savee JD, Papajak E, Rotavera B, Huang H, Eskola AJ, Welz O, Sheps L, Taatjes CA, Zador J, Osborn DL., Science 347(6222), 2015
PMID: 25657245
Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation
Rodriguez A., 2017
NEW EXPERIMENTAL EVIDENCES ABOUT THE FORMATION AND CONSUMPTION OF KETOHYDROPEROXIDES.
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Proc Combust Inst 33(1), 2011
PMID: 23700382
Multi-path variational transition state theory for chiral molecules: The site-dependent kinetics for abstraction of hydrogen from 2-butanol by hydroperoxyl radical, analysis of hydrogen bonding in the transition state, and dramatic temperature dependence of the activation energy
Bao JL, Meana-Paneda R, Truhlar DG., 2015
Theoretical kinetic studies for low temperature oxidation of two typical methylcyclohexyl radicals
Xing L, Zhang L, Zhang F, Jiang J., 2017
Low- and intermediate- temperature oxidation of ethylcyclohexane: A theoretical study
Ning H, Gong C, Tan N, Li Z, Li X., 2015
Third O addition reactions promote the low temperature ignition of n-alkanes
Wang Z, Sarathy MS., 2016
Modelling n-dodecane spray and combustion with the transported probability density function method
Pei Y, Hawkes ER, Kook S, Goldin GM, Lu T., 2015
Flame extinction and low-temperature combustion of isolated fuel droplets of n-alkanes
Cuoci A., 2017

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29183984
PubMed | Europe PMC

Suchen in

Google Scholar