EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts

Weber APM, Oesterhelt C, Gross W, Bräutigam A, Imboden L, Krassovskaya I, Linka N, Truchina J, Schneidereit J, Voll H, Voll L, et al. (2004)
Plant Molecular Biology 55(1): 17-32.

Download
OA 340.69 KB
Journal Article | Published | English
Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degreesC. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria, 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.
Publishing Year
PUB-ID

Cite this

Weber APM, Oesterhelt C, Gross W, et al. EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology. 2004;55(1):17-32.
Weber, A. P. M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L., Krassovskaya, I., Linka, N., et al. (2004). EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology, 55(1), 17-32. doi:10.1007/s11103-004-0376-y
Weber, A. P. M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H., et al. (2004). EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology 55, 17-32.
Weber, A.P.M., et al., 2004. EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology, 55(1), p 17-32.
A.P.M. Weber, et al., “EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts”, Plant Molecular Biology, vol. 55, 2004, pp. 17-32.
Weber, A.P.M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H., Voll, L., Zimmermann, M., Jamai, A., Riekhof, W., Yu, B., Garavito, R., Benning, C.: EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Molecular Biology. 55, 17-32 (2004).
Weber, Andreas P. M., Oesterhelt, Christine, Gross, Wolfgang, Bräutigam, Andrea, Imboden, Lori, Krassovskaya, Inga, Linka, Nicole, Truchina, Julia, Schneidereit, Jörg, Voll, Hildegard, Voll, Lars, Zimmermann, Marc, Jamai, Aziz, Riekhof, Wayne, Yu, Bin, Garavito, R., and Benning, Christoph. “EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts”. Plant Molecular Biology 55.1 (2004): 17-32.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-12-18T10:44:51Z

This data publication is cited in the following publications:
This publication cites the following data publications:

42 Citations in Europe PMC

Data provided by Europe PubMed Central.

Evolution and regulation of Bigelowiella natans light-harvesting antenna system.
A D Neilson J, Rangsrikitphoti P, Durnford DG., J. Plant Physiol. 217(), 2017
PMID: 28619535
In situ gene expression profiling of the thermoacidophilic alga Cyanidioschyzon in relation to visible and ultraviolet irradiance.
Skorupa DJ, Castenholz RW, Mazurie A, Carey C, Rosenzweig F, McDermott TR., Environ. Microbiol. 16(6), 2014
PMID: 24274381
Whole genome identification and analysis of FK506-binding protein family genes in grapevine (Vitis vinifera L.).
Shangguan L, Kayesh E, Leng X, Sun X, Korir NK, Mu Q, Fang J., Mol. Biol. Rep. 40(6), 2013
PMID: 23269629
Structural architecture of Galdieria sulphuraria DCN1L.
Sethe Burgie E, Bingman CA, Makino S, Wesenberg GE, Pan X, Fox BG, Phillips GN Jr., Proteins 79(4), 2011
PMID: 21387409
Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria.
Thangaraj B, Jolley CC, Sarrou I, Bultema JB, Greyslak J, Whitelegge JP, Lin S, Kouril R, Subramanyam R, Boekema EJ, Fromme P., Biophys. J. 100(1), 2011
PMID: 21190665
Actin gene family dynamics in cryptomonads and red algae.
Tanifuji G, Archibald JM., J. Mol. Evol. 71(3), 2010
PMID: 20700735
Discovery of sarcosine dimethylglycine methyltransferase from Galdieria sulphuraria.
McCoy JG, Bailey LJ, Ng YH, Bingman CA, Wrobel R, Weber AP, Fox BG, Phillips GN Jr., Proteins 74(2), 2009
PMID: 18623062
Molecular and biochemical analysis of periplastidial starch metabolism in the cryptophyte Guillardia theta.
Haferkamp I, Deschamps P, Ast M, Jeblick W, Maier U, Ball S, Neuhaus HE., Eukaryotic Cell 5(6), 2006
PMID: 16757744
HCF153, a novel nuclear-encoded factor necessary during a post-translational step in biogenesis of the cytochrome bf complex.
Lennartz K, Bossmann S, Westhoff P, Bechtold N, Meierhoff K., Plant J. 45(1), 2006
PMID: 16367957

88 References

Data provided by Europe PubMed Central.

The upper temperature limit for eukaryotic organisms.
Tansey MR, Brock TD., Proc. Natl. Acad. Sci. U.S.A. 69(9), 1972
PMID: 4506763
Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation.
Uemura K, Anwaruzzaman , Miyachi S, Yokota A., Biochem. Biophys. Res. Commun. 233(2), 1997
PMID: 9144578

Viola, Proc. Roy. Soc. Lond. B 268(), 2001
Identification, purification, and molecular cloning of a putative plastidic glucose translocator.
Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Groner F, Hebbeker U, Flugge UI., Plant Cell 12(5), 2000
PMID: 10810150
Maltose is the major form of carbon exported from the chloroplast at night.
Weise SE, Weber AP, Sharkey TD., Planta 218(3), 2004
PMID: 14566561
Spinach hexokinase I is located in the outer envelope membrane of plastids.
Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge U, Weber A., FEBS Lett. 461(1-2), 1999
PMID: 10561488
Theories and applications for sequencing randomly selected clones.
Wendl MC, Marra MA, Hillier LW, Chinwalla AT, Wilson RK, Waterston RH., Genome Res. 11(2), 2001
PMID: 11157790
Sugar transporters in higher plants--a diversity of roles and complex regulation.
Williams LE, Lemoine R, Sauer N., Trends Plant Sci. 5(7), 2000
PMID: 10871900

Yoshimura, Hydrobiology 433(), 2000

Yoshimura, Soil Sci. Plant Nutrit. 45(), 1999

Yu, Starch-Stärke 54(), 2002

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15604662
PubMed | Europe PMC

Search this title in

Google Scholar