Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4?

Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P (2011)
Plant Cell 23(6): 2087-2105.

Download
OA 2.34 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ;
Abstract / Bemerkung
Selective pressure exerted by a massive decline in atmospheric CO2 levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C-4 photosynthesis. C-4 species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution of the complex C-4 trait indicates a common underlying evolutionary mechanism that might be elucidated by comparative analyses of related C-3 and C-4 species. Here, we use mRNA-Seq analysis of five species within the genus Flaveria, ranging from C-3 to C-3-C-4 intermediate to C-4 species, to quantify the differences in the transcriptomes of closely related plant species with varying degrees of C-4-associated characteristics. Single gene analysis defines the C-4 cycle enzymes and transporters more precisely and provides new candidates for yet unknown functions as well as identifies C-4 associated pathways. Molecular evidence for a photorespiratory CO2 pump prior to the establishment of the C-4 cycle-based CO2 pump is provided. Cluster analysis defines the upper limit of C-4-related gene expression changes in mature leaves of Flaveria as 3582 alterations.
Erscheinungsjahr
Zeitschriftentitel
Plant Cell
Band
23
Zeitschriftennummer
6
Seite
2087-2105
ISSN
PUB-ID

Zitieren

Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4? Plant Cell. 2011;23(6):2087-2105.
Gowik, U., Bräutigam, A., Weber, K. L., Weber, A. P. M., & Westhoff, P. (2011). Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4? Plant Cell, 23(6), 2087-2105. doi:10.1105/tpc.111.086264
Gowik, U., Bräutigam, A., Weber, K. L., Weber, A. P. M., and Westhoff, P. (2011). Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4? Plant Cell 23, 2087-2105.
Gowik, U., et al., 2011. Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4? Plant Cell, 23(6), p 2087-2105.
U. Gowik, et al., “Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4?”, Plant Cell, vol. 23, 2011, pp. 2087-2105.
Gowik, U., Bräutigam, A., Weber, K.L., Weber, A.P.M., Westhoff, P.: Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4? Plant Cell. 23, 2087-2105 (2011).
Gowik, Udo, Bräutigam, Andrea, Weber, Katrin L., Weber, Andreas P. M., and Westhoff, Peter. “Evolution of C-4 Photosynthesis in the Genus Flaveria: How Many and Which Genes Does It Take to Make C-4?”. Plant Cell 23.6 (2011): 2087-2105.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-19T09:14:57Z

68 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Getting the most out of natural variation in C4 photosynthesis.
Covshoff S, Burgess SJ, Kneřová J, Kümpers BM., Photosynth Res 119(1-2), 2014
PMID: 23794170
You're so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants.
Griffiths H, Weller G, Toy LF, Dennis RJ., Plant Cell Environ 36(2), 2013
PMID: 22827921
Historical profiling of maize duplicate genes sheds light on the evolution of C4 photosynthesis in grasses.
Chang YM, Chang CL, Li WH, Shih AC., Mol Phylogenet Evol 66(2), 2013
PMID: 22960144
Progress in understanding and engineering primary plant metabolism.
Stitt M., Curr Opin Biotechnol 24(2), 2013
PMID: 23219183
The challenges of cellular compartmentalization in plant metabolic engineering.
Heinig U, Gutensohn M, Dudareva N, Aharoni A., Curr Opin Biotechnol 24(2), 2013
PMID: 23246154
Parallel recruitment of multiple genes into c4 photosynthesis.
Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP., Genome Biol Evol 5(11), 2013
PMID: 24179135
5' Regulatory region of ubiquitin 2 gene from Porteresia coarctata makes efficient promoters for transgene expression in monocots and dicots.
Philip A, Syamaladevi DP, Chakravarthi M, Gopinath K, Subramonian N., Plant Cell Rep 32(8), 2013
PMID: 23508257
Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C₄ pathway in CO₂ assimilation.
Xu J, Zhang X, Ye N, Zheng Z, Mou S, Dong M, Xu D, Miao J., Sci China Life Sci 56(6), 2013
PMID: 23737004
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis.
Williams BP, Johnston IG, Covshoff S, Hibberd JM., Elife 2(), 2013
PMID: 24082995
Plant organellar calcium signalling: an emerging field.
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M., J Exp Bot 63(4), 2012
PMID: 22200666
The leaf reticulate mutant dov1 is impaired in the first step of purine metabolism.
Rosar C, Kanonenberg K, Nanda AM, Mielewczik M, Bräutigam A, Novák O, Strnad M, Walter A, Weber AP., Mol Plant 5(6), 2012
PMID: 22532604
Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.
Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N., PLoS One 7(5), 2012
PMID: 22616009
Advances in omics and bioinformatics tools for systems analyses of plant functions.
Mochida K, Shinozaki K., Plant Cell Physiol 52(12), 2011
PMID: 22156726

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21705644
PubMed | Europe PMC

Suchen in

Google Scholar