A plastidial sodium-dependent pyruvate transporter

Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, et al. (2011)
Nature 476(7361): 472-U131.

Download
OA 818.67 KB
Journal Article | Original Article | Published | English
Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Pyruvate serves as a metabolic precursor for many plastid-localized biosynthetic pathways, such as those for fatty acids(1), terpenoids(2) and branched-chainamino acids(3). In spite of the importance of pyruvate uptake into plastids (organelles within cells of plants and algae), the molecular mechanisms of this uptake have not yet been explored. This is mainly because pyruvate is a relatively small compound that is able to passively permeate lipid bilayers(4), which precludes accurate measurement of pyruvate transport activity in reconstituted liposomes. Using differential transcriptome analyses of C(3) and C(4) plants of the genera Flaveria and Cleome, here we have identified a novel gene that is abundant in C(4) species, named BASS2 (BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2). The BASS2 protein is localized at the chloroplast envelope membrane, and is highly abundant in C(4) plants that have the sodium-dependent pyruvate transporter. Recombinant BASS2 shows sodium-dependent pyruvate uptake activity. Sodium influx is balanced by a sodium: proton antiporter (NHD1), which was mimicked in recombinant Escherichia coli cells expressing both BASS2 and NHD1. Arabidopsis thaliana bass2 mutants lack pyruvate uptake into chloroplasts, which affects plastid-localized isopentenyl diphosphate synthesis, as evidenced by increased sensitivity of such mutants to mevastatin, an inhibitor of cytosolic isopentenyl diphosphate biosynthesis. We thus provide molecular evidence for a sodium-coupled metabolite transporter in plastid envelopes. Orthologues of BASS2 can be detected in all the genomes of land plants that have been characterized so far, thus indicating the widespread importance of sodium-coupled pyruvate import into plastids.
Publishing Year
ISSN
PUB-ID

Cite this

Furumoto T, Yamaguchi T, Ohshima-Ichie Y, et al. A plastidial sodium-dependent pyruvate transporter. Nature. 2011;476(7361):472-U131.
Furumoto, T., Yamaguchi, T., Ohshima-Ichie, Y., Nakamura, M., Tsuchida-Iwata, Y., Shimamura, M., Ohnishi, J., et al. (2011). A plastidial sodium-dependent pyruvate transporter. Nature, 476(7361), 472-U131. doi:10.1038/nature10250
Furumoto, T., Yamaguchi, T., Ohshima-Ichie, Y., Nakamura, M., Tsuchida-Iwata, Y., Shimamura, M., Ohnishi, J., Hata, S., Gowik, U., Westhoff, P., et al. (2011). A plastidial sodium-dependent pyruvate transporter. Nature 476, 472-U131.
Furumoto, T., et al., 2011. A plastidial sodium-dependent pyruvate transporter. Nature, 476(7361), p 472-U131.
T. Furumoto, et al., “A plastidial sodium-dependent pyruvate transporter”, Nature, vol. 476, 2011, pp. 472-U131.
Furumoto, T., Yamaguchi, T., Ohshima-Ichie, Y., Nakamura, M., Tsuchida-Iwata, Y., Shimamura, M., Ohnishi, J., Hata, S., Gowik, U., Westhoff, P., Bräutigam, A., Weber, A.P.M., Izui, K.: A plastidial sodium-dependent pyruvate transporter. Nature. 476, 472-U131 (2011).
Furumoto, Tsuyoshi, Yamaguchi, Teppei, Ohshima-Ichie, Yumiko, Nakamura, Masayoshi, Tsuchida-Iwata, Yoshiko, Shimamura, Masaki, Ohnishi, Junichi, Hata, Shingo, Gowik, Udo, Westhoff, Peter, Bräutigam, Andrea, Weber, Andreas P. M., and Izui, Katsura. “A plastidial sodium-dependent pyruvate transporter”. Nature 476.7361 (2011): 472-U131.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-12-19T09:16:14Z

This data publication is cited in the following publications:
This publication cites the following data publications:

68 Citations in Europe PMC

Data provided by Europe PubMed Central.

Getting the most out of natural variation in C4 photosynthesis.
Covshoff S, Burgess SJ, Kneřová J, Kümpers BM., Photosynth Res 119(1-2), 2014
PMID: 23794170
The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species.
Price GD, Pengelly JJ, Forster B, Du J, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR., J Exp Bot 64(3), 2013
PMID: 23028015
The role of membrane transport in metabolic engineering of plant primary metabolism.
Weber AP, Bräutigam A., Curr Opin Biotechnol 24(2), 2013
PMID: 23040411
Progress in understanding and engineering primary plant metabolism.
Stitt M., Curr Opin Biotechnol 24(2), 2013
PMID: 23219183
The spatial organization of metabolism within the plant cell.
Sweetlove LJ, Fernie AR., Annu Rev Plant Biol 64(), 2013
PMID: 23330793
Biosynthesis, function and metabolic engineering of plant volatile organic compounds.
Dudareva N, Klempien A, Muhlemann JK, Kaplan I., New Phytol 198(1), 2013
PMID: 23383981
Commentary: why don't plant leaves get fat?
Chapman KD, Dyer JM, Mullen RT., Plant Sci 207(), 2013
PMID: 23602107
Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.
Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N., Plant J 75(3), 2013
PMID: 23607888
Role of metabolite transporters in source-sink carbon allocation.
Ludewig F, Flügge UI., Front Plant Sci 4(), 2013
PMID: 23847636
Multiple Arabidopsis genes primed for recruitment into C₄ photosynthesis.
Kajala K, Brown NJ, Williams BP, Borrill P, Taylor LE, Hibberd JM., Plant J 69(1), 2012
PMID: 21883556
Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts.
Angaman DM, Petrizzo R, Hernández-Gras F, Romero-Segura C, Pateraki I, Busquets M, Boronat A., Plant Methods 8(1), 2012
PMID: 22243738
Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.
O'Grady J, Schwender J, Shachar-Hill Y, Morgan JA., J Exp Bot 63(6), 2012
PMID: 22371075
Exploring the switchgrass transcriptome using second-generation sequencing technology.
Wang Y, Zeng X, Iyer NJ, Bryant DW, Mockler TC, Mahalingam R., PLoS One 7(3), 2012
PMID: 22479570
The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D., Annu Rev Genet 46(), 2012
PMID: 22934643
The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations.
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, Böhm C, Schmid M, Galushko A, Hatzenpichler R, Weinmaier T, Daniel R, Schleper C, Spieck E, Streit W, Wagner M., Environ Microbiol 14(12), 2012
PMID: 23057602

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21866161
PubMed | Europe PMC

Search this title in

Google Scholar