Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis

Schlueter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U (2012)
Plant Physiology 160(3): 1384-1406.

Download
OA 1.88 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype-and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.
Erscheinungsjahr
Zeitschriftentitel
Plant Physiology
Band
160
Zeitschriftennummer
3
Seite
1384-1406
ISSN
eISSN
PUB-ID

Zitieren

Schlueter U, Mascher M, Colmsee C, et al. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology. 2012;160(3):1384-1406.
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., & Sonnewald, U. (2012). Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology, 160(3), 1384-1406. doi:10.1104/pp.112.204420
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., and Sonnewald, U. (2012). Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology 160, 1384-1406.
Schlueter, U., et al., 2012. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology, 160(3), p 1384-1406.
U. Schlueter, et al., “Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis”, Plant Physiology, vol. 160, 2012, pp. 1384-1406.
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., Sonnewald, U.: Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology. 160, 1384-1406 (2012).
Schlueter, Urte, Mascher, Martin, Colmsee, Christian, Scholz, Uwe, Bräutigam, Andrea, Fahnenstich, Holger, and Sonnewald, Uwe. “Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis”. Plant Physiology 160.3 (2012): 1384-1406.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-19T09:28:25Z

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene.
Lian L, Wang X, Zhu Y, He W, Cai Q, Xie H, Zhang M, Zhang J., Mol Biol Rep 41(4), 2014
PMID: 24469712
miR444a has multiple functions in the rice nitrate-signaling pathway.
Yan Y, Wang H, Hamera S, Chen X, Fang R., Plant J 78(1), 2014
PMID: 24460537
UniVIO: a multiple omics database with hormonome and transcriptome data from rice.
Kudo T, Akiyama K, Kojima M, Makita N, Sakurai T, Sakakibara H., Plant Cell Physiol 54(2), 2013
PMID: 23314752
Manipulation of microRNA expression to improve nitrogen use efficiency.
Fischer JJ, Beatty PH, Good AG, Muench DG., Plant Sci 210(), 2013
PMID: 23849115
Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U., BMC Genomics 14(), 2013
PMID: 23822863
Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability.
Luo J, Li H, Liu T, Polle A, Peng C, Luo ZB., J Exp Bot 64(14), 2013
PMID: 23963674
Manipulation of microRNA expression to improve nitrogen use efficiency
Fischer JJ, Beatty PH, Good AG, Muench DG., Plant Sci 210(), 2013
PMID: IND500678014
OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize.
Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Börnke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber AP, Schreiber F, Scholz U, Sonnewald U., BMC Plant Biol 12(), 2012
PMID: 23272737

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22972706
PubMed | Europe PMC

Suchen in

Google Scholar