OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize

Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlueter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, et al. (2012)
BMC Plant Biology 12: 245.

Download
OA 2.03 MB
Journal Article | Original Article | Published | English
Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Background: Maize is a major crop plant, grown for human and animal nutrition, as well as a renewable resource for bioenergy. When looking at the problems of limited fossil fuels, the growth of the world's population or the world's climate change, it is important to find ways to increase the yield and biomass of maize and to study how it reacts to specific abiotic and biotic stress situations. Within the OPTIMAS systems biology project maize plants were grown under a large set of controlled stress conditions, phenotypically characterised and plant material was harvested to analyse the effect of specific environmental conditions or developmental stages. Transcriptomic, metabolomic, ionomic and proteomic parameters were measured from the same plant material allowing the comparison of results across different omics domains. A data warehouse was developed to store experimental data as well as analysis results of the performed experiments. Description: The OPTIMAS Data Warehouse (OPTIMAS-DW) is a comprehensive data collection for maize and integrates data from different data domains such as transcriptomics, metabolomics, ionomics, proteomics and phenomics. Within the OPTIMAS project, a 44K oligo chip was designed and annotated to describe the functions of the selected unigenes. Several treatment- and plant growth stage experiments were performed and measured data were filled into data templates and imported into the data warehouse by a Java based import tool. A web interface allows users to browse through all stored experiment data in OPTIMAS-DW including all data domains. Furthermore, the user can filter the data to extract information of particular interest. All data can be exported into different file formats for further data analysis and visualisation. The data analysis integrates data from different data domains and enables the user to find answers to different systems biology questions. Finally, maize specific pathway information is provided. Conclusions: With OPTIMAS-DW a data warehouse for maize was established, which is able to handle different data domains, comprises several analysis results that will support researchers within their work and supports systems biological research in particular. The system is available at http://www.optimas-bioenergy.org/optimas_dw.
Publishing Year
ISSN
PUB-ID

Cite this

Colmsee C, Mascher M, Czauderna T, et al. OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology. 2012;12: 245.
Colmsee, C., Mascher, M., Czauderna, T., Hartmann, A., Schlueter, U., Zellerhoff, N., Schmitz, J., et al. (2012). OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology, 12, 245. doi:10.1186/1471-2229-12-245
Colmsee, C., Mascher, M., Czauderna, T., Hartmann, A., Schlueter, U., Zellerhoff, N., Schmitz, J., Bräutigam, A., Pick, T. R., Alter, P., et al. (2012). OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology 12:245.
Colmsee, C., et al., 2012. OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology, 12: 245.
C. Colmsee, et al., “OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize”, BMC Plant Biology, vol. 12, 2012, : 245.
Colmsee, C., Mascher, M., Czauderna, T., Hartmann, A., Schlueter, U., Zellerhoff, N., Schmitz, J., Bräutigam, A., Pick, T.R., Alter, P., Gahrtz, M., Witt, S., Fernie, A.R., Boernke, F., Fahnenstich, H., Bucher, M., Dresselhaus, T., Weber, A.P.M., Schreiber, F., Scholz, U., Sonnewald, U.: OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biology. 12, : 245 (2012).
Colmsee, Christian, Mascher, Martin, Czauderna, Tobias, Hartmann, Anja, Schlueter, Urte, Zellerhoff, Nina, Schmitz, Jessica, Bräutigam, Andrea, Pick, Thea R., Alter, Philipp, Gahrtz, Manfred, Witt, Sandra, Fernie, Alisdair R., Boernke, Frederik, Fahnenstich, Holger, Bucher, Marcel, Dresselhaus, Thomas, Weber, Andreas P. M., Schreiber, Falk, Scholz, Uwe, and Sonnewald, Uwe. “OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize”. BMC Plant Biology 12 (2012): 245.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-12-19T09:24:30Z

This data publication is cited in the following publications:
This publication cites the following data publications:

17 Citations in Europe PMC

Data provided by Europe PubMed Central.

A multi-omics approach reveals function of Secretory Carrier-Associated Membrane Proteins in wood formation of​ ​​Populus​​ ​trees.
Obudulu O, Mähler N, Skotare T, Bygdell J, Abreu IN, Ahnlund M, Latha Gandla M, Petterle A, Moritz T, Hvidsten TR, Jönsson LJ, Wingsle G, Trygg J, Tuominen H., BMC Genomics 19(1), 2018
PMID: 29298676
The manipulation of gene expression and the biosynthesis of Vitamin C, E and folate in light-and dark-germination of sweet corn seeds.
Liu F, Xiang N, Hu JG, Shijuan Y, Xie L, Brennan CS, Huang W, Guo X., Sci Rep 7(1), 2017
PMID: 28790401
Metabolic response of maize plants to multi-factorial abiotic stresses.
Sun CX, Li MQ, Gao XX, Liu LN, Wu XF, Zhou JH., Plant Biol (Stuttg) 18 Suppl 1(), 2016
PMID: 25622534
Omics data input for metabolic modeling.
Rai A, Saito K., Curr Opin Biotechnol 37(), 2016
PMID: 26723010
LAILAPS: the plant science search engine.
Esch M, Chen J, Colmsee C, Klapperstück M, Grafahrend-Belau E, Scholz U, Lange M., Plant Cell Physiol 56(1), 2015
PMID: 25480116
An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M., Plant Cell Environ 38(8), 2015
PMID: 25630535
Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants.
Hill CB, Czauderna T, Klapperstück M, Roessner U, Schreiber F., Front Bioeng Biotechnol 3(), 2015
PMID: 26557642
From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat.
Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N., Front Plant Sci 6(), 2015
PMID: 26635838
Testing the ecological consequences of evolutionary change using elements.
Jeyasingh PD, Cothran RD, Tobler M., Ecol Evol 4(4), 2014
PMID: 24634736
Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.
Mascher M, Gerlach N, Gahrtz M, Bucher M, Scholz U, Dresselhaus T., PLoS One 9(5), 2014
PMID: 24804793
Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B., J Exp Bot 65(19), 2014
PMID: 24863438
Field-omics-understanding large-scale molecular data from field crops.
Alexandersson E, Jacobson D, Vivier MA, Weckwerth W, Andreasson E., Front Plant Sci 5(), 2014
PMID: 24999347
Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U., BMC Genomics 14(), 2013
PMID: 23822863
Conserved versatile master regulators in signalling pathways in response to stress in plants.
Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S., AoB Plants 5(), 2013
PMID: 24147216
Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils.
Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M., Front Plant Sci 4(), 2013
PMID: 24409191

19 References

Data provided by Europe PubMed Central.

MaizeGDB, the community database for maize genetics and genomics.
Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681441
Panzea: a database and resource for molecular and functional diversity in the maize genome.
Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, Buckler E, Doebley J, Gaut B, Goodman M, Holland J, Kresovich S, McMullen M, Stein L, Ware D., Nucleic Acids Res. 34(Database issue), 2006
PMID: 16381974
VANTED: a system for advanced data analysis and visualization in the context of biological networks.
Junker BH, Klukas C, Schreiber F., BMC Bioinformatics 7(), 2006
PMID: 16519817
MetaCrop 2.0: managing and exploring information about crop plant metabolism.
Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstuck M, Scholz U, Weise S., Nucleic Acids Res. 40(Database issue), 2012
PMID: 22086948
WGCNA: an R package for weighted correlation network analysis.
Langfelder P, Horvath S., BMC Bioinformatics 9(), 2008
PMID: 19114008
Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants.
Weston DJ, Gunter LE, Rogers A, Wullschleger SD., BMC Syst Biol 2(), 2008
PMID: 18248680
Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome.
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA., PLoS ONE 6(10), 2011
PMID: 22039529
Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array.
Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S, Banfalvi Z, Hammond JP, Geigenberger P, Nielsen KL, Visser RG, Bachem CW., Funct. Integr. Genomics 8(4), 2008
PMID: 18504629
Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs.
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S., Genome Res. 14(6), 2004
PMID: 15140833
The B73 maize genome: complexity, diversity, and dynamics.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK., Science 326(5956), 2009
PMID: 19965430
ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets.
Deng W, Nickle DC, Learn GH, Maust B, Mullins JI., Bioinformatics 23(17), 2007
PMID: 17586542
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M., Bioinformatics 21(18), 2005
PMID: 16081474

AUTHOR UNKNOWN, 0
The Sorghum bicolor genome and the diversification of grasses.
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman , Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS., Nature 457(7229), 2009
PMID: 19189423

AUTHOR UNKNOWN, 0
Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation.
Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F., Nat Protoc 7(3), 2012
PMID: 22383037
The Systems Biology Graphical Notation.
Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villeger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H., Nat. Biotechnol. 27(8), 2009
PMID: 19668183
Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.
Schluter U, Mascher M, Colmsee C, Scholz U, Brautigam A, Fahnenstich H, Sonnewald U., Plant Physiol. 160(3), 2012
PMID: 22972706

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23272737
PubMed | Europe PMC

Search this title in

Google Scholar