The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus

Lota F, Wegmueller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M (2013)
The Plant Journal 74(2): 280-293.

Download
OA 2.68 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The majority of land plants live in symbiosis with arbuscular mycorrhizal fungi from the phylum Glomeromycota. This symbiosis improves acquisition of phosphorus (P) by the host plant in exchange for carbohydrates, especially under low-P availability. The symbiosome, constituted by root cortex cells accommodating arbuscular mycorrhizal fungal hyphae, is the site at which bi-directional exchange of nutrients and metabolites takes place. Uptake of orthophosphate (Pi) in the symbiosome is facilitated by mycorrhiza-specific plant Pi transporters. Modifications of the potato Pi transporter 3 (StPT3) promoter were analysed in transgenic mycorrhizal roots, and it was found that the CTTC cis-regulatory element is necessary and sufficient for a transcriptional response to fungal colonization under low-Pi conditions. Phylogenetic foot-printing also revealed binary combination of the CTTC element with the Pi starvation response-associated PHR1-binding site (P1BS) in the promoters of several mycorrhiza-specific Pi transporter genes. Scanning of the Lotus japonicus genome for gene promoters containing both cis-regulatory elements revealed a strong over-representation of genes involved in transport processes. One of these, LjVTI12, encoding a member of the SNARE family of proteins involved in membrane transport, exhibited enhanced transcript levels in Lotus roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Down-regulation of LjVTI12 by RNA interference resulted in a mycorrhiza-specific phenotype characterized by distorted arbuscule morphology. The results highlight cooperative cis-regulation which integrates mycorrhiza and Pi starvation signaling with vesicle trafficking in symbiosome development.
Erscheinungsjahr
Zeitschriftentitel
The Plant Journal
Band
74
Zeitschriftennummer
2
Seite
280-293
ISSN
PUB-ID

Zitieren

Lota F, Wegmueller S, Buer B, et al. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal. 2013;74(2):280-293.
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., & Bucher, M. (2013). The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal, 74(2), 280-293. doi:10.1111/tpj.12120
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., and Bucher, M. (2013). The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal 74, 280-293.
Lota, F., et al., 2013. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal, 74(2), p 280-293.
F. Lota, et al., “The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus”, The Plant Journal, vol. 74, 2013, pp. 280-293.
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., Bucher, M.: The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal. 74, 280-293 (2013).
Lota, Frederic, Wegmueller, Sarah, Buer, Benjamin, Sato, Shusei, Bräutigam, Andrea, Hanf, Benjamin, and Bucher, Marcel. “The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus”. The Plant Journal 74.2 (2013): 280-293.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-19T09:30:10Z

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E., Mycorrhiza 28(1), 2018
PMID: 28725961
Transcriptional Regulation of Arbuscular Mycorrhiza Development.
Pimprikar P, Gutjahr C., Plant Cell Physiol 59(4), 2018
PMID: 29425360
A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements.
Qiao Z, Pingault L, Zogli P, Langevin M, Rech N, Farmer A, Libault M., Plant Mol Biol 94(6), 2017
PMID: 28687904
Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.
Vijayakumar V, Liebisch G, Buer B, Xue L, Gerlach N, Blau S, Schmitz J, Bucher M., Plant Cell Environ 39(2), 2016
PMID: 26297195
Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1.
Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N., Curr Biol 26(20), 2016
PMID: 27641773
The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.
Liao D, Chen X, Chen A, Wang H, Liu J, Liu J, Gu M, Sun S, Xu G., Plant Cell Physiol 56(4), 2015
PMID: 25535196
Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation.
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R., Plant Cell Physiol 55(5), 2014
PMID: 24492255
Through the doors of perception to function in arbuscular mycorrhizal symbioses.
Bucher M, Hause B, Krajinski F, Küster H., New Phytol 204(4), 2014
PMID: 25414918
Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R., New Phytol 204(4), 2014
PMID: 25168837
Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling.
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G., J Integr Plant Biol 56(12), 2014
PMID: 24975554
Control of arbuscular mycorrhiza development by nutrient signals.
Carbonnel S, Gutjahr C., Front Plant Sci 5(), 2014
PMID: 25309561
Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view.
Nathalie Leborgne-Castel, Bouhidel K., Front Plant Sci 5(), 2014
PMID: 25566303
Cell and developmental biology of arbuscular mycorrhiza symbiosis.
Gutjahr C, Parniske M., Annu Rev Cell Dev Biol 29(), 2013
PMID: 24099088
Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development.
Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, Findlay K, Wang TL, Parniske M., Plant J 75(1), 2013
PMID: 23627596

64 References

Daten bereitgestellt von Europe PubMed Central.

A phosphate transporter expressed in arbuscule-containing cells in potato.
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M., Nature 414(6862), 2001
PMID: 11719809
Glomalean fungi from the Ordovician.
Redecker D, Kodner R, Graham LE., Science 289(5486), 2000
PMID: 10988069
Four hundred-million-year-old vesicular arbuscular mycorrhizae.
Remy W, Taylor TN, Hass H, Kerp H., Proc. Natl. Acad. Sci. U.S.A. 91(25), 1994
PMID: 11607500
A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae.
Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J., Genes Dev. 15(16), 2001
PMID: 11511543
Genome structure of the legume, Lotus japonicus.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S., DNA Res. 15(4), 2008
PMID: 18511435
The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction.
Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A., Cell 60(2), 1990
PMID: 2297789
Specific effects of microRNAs on the plant transcriptome.
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D., Dev. Cell 8(4), 2005
PMID: 15809034
Highly specific gene silencing by artificial microRNAs in Arabidopsis.
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D., Plant Cell 18(5), 2006
PMID: 16531494
The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways.
Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N., Plant Cell 15(12), 2003
PMID: 14615598
Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH., Cell Struct. Funct. 29(2), 2004
PMID: 15342965
SNARE protein structure and function.
Ungar D, Hughson FM., Annu. Rev. Cell Dev. Biol. 19(), 2003
PMID: 14570579

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23452278
PubMed | Europe PMC

Suchen in

Google Scholar