The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus

Lota F, Wegmueller S, Buer B, Sato S, Bräutigam A, Hanf B, Bucher M (2013)
The Plant Journal 74(2): 280-293.

Download
OA 2.68 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The majority of land plants live in symbiosis with arbuscular mycorrhizal fungi from the phylum Glomeromycota. This symbiosis improves acquisition of phosphorus (P) by the host plant in exchange for carbohydrates, especially under low-P availability. The symbiosome, constituted by root cortex cells accommodating arbuscular mycorrhizal fungal hyphae, is the site at which bi-directional exchange of nutrients and metabolites takes place. Uptake of orthophosphate (Pi) in the symbiosome is facilitated by mycorrhiza-specific plant Pi transporters. Modifications of the potato Pi transporter 3 (StPT3) promoter were analysed in transgenic mycorrhizal roots, and it was found that the CTTC cis-regulatory element is necessary and sufficient for a transcriptional response to fungal colonization under low-Pi conditions. Phylogenetic foot-printing also revealed binary combination of the CTTC element with the Pi starvation response-associated PHR1-binding site (P1BS) in the promoters of several mycorrhiza-specific Pi transporter genes. Scanning of the Lotus japonicus genome for gene promoters containing both cis-regulatory elements revealed a strong over-representation of genes involved in transport processes. One of these, LjVTI12, encoding a member of the SNARE family of proteins involved in membrane transport, exhibited enhanced transcript levels in Lotus roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Down-regulation of LjVTI12 by RNA interference resulted in a mycorrhiza-specific phenotype characterized by distorted arbuscule morphology. The results highlight cooperative cis-regulation which integrates mycorrhiza and Pi starvation signaling with vesicle trafficking in symbiosome development.
Erscheinungsjahr
Zeitschriftentitel
The Plant Journal
Band
74
Zeitschriftennummer
2
Seite
280-293
ISSN
PUB-ID

Zitieren

Lota F, Wegmueller S, Buer B, et al. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal. 2013;74(2):280-293.
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., & Bucher, M. (2013). The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal, 74(2), 280-293. doi:10.1111/tpj.12120
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., and Bucher, M. (2013). The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal 74, 280-293.
Lota, F., et al., 2013. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal, 74(2), p 280-293.
F. Lota, et al., “The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus”, The Plant Journal, vol. 74, 2013, pp. 280-293.
Lota, F., Wegmueller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., Bucher, M.: The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. The Plant Journal. 74, 280-293 (2013).
Lota, Frederic, Wegmueller, Sarah, Buer, Benjamin, Sato, Shusei, Bräutigam, Andrea, Hanf, Benjamin, and Bucher, Marcel. “The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus”. The Plant Journal 74.2 (2013): 280-293.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-19T09:30:10Z

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.
Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E., Mycorrhiza 28(1), 2018
PMID: 28725961
Transcriptional Regulation of Arbuscular Mycorrhiza Development.
Pimprikar P, Gutjahr C., Plant Cell Physiol 59(4), 2018
PMID: 29425360
Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses.
Choi J, Summers W, Paszkowski U., Annu Rev Phytopathol 56(), 2018
PMID: 29856935
Identification and Functional Characterization of a Maize Phosphate Transporter Induced by Mycorrhiza Formation.
Liu F, Xu Y, Han G, Wang W, Li X, Cheng B., Plant Cell Physiol 59(8), 2018
PMID: 29767790
AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus.
Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M., Proc Natl Acad Sci U S A 115(39), 2018
PMID: 30209216
Comparative transcriptome analysis of Poncirus trifoliata identifies a core set of genes involved in arbuscular mycorrhizal symbiosis.
An J, Sun M, van Velzen R, Ji C, Zheng Z, Limpens E, Bisseling T, Deng X, Xiao S, Pan Z., J Exp Bot 69(21), 2018
PMID: 30312435
A comparative genomic and transcriptomic analysis at the level of isolated root hair cells reveals new conserved root hair regulatory elements.
Qiao Z, Pingault L, Zogli P, Langevin M, Rech N, Farmer A, Libault M., Plant Mol Biol 94(6), 2017
PMID: 28687904
Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis.
MacLean AM, Bravo A, Harrison MJ., Plant Cell 29(10), 2017
PMID: 28855333
Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis.
Vijayakumar V, Liebisch G, Buer B, Xue L, Gerlach N, Blau S, Schmitz J, Bucher M., Plant Cell Environ 39(2), 2016
PMID: 26297195
Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots.
Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T., Plant Physiol 171(1), 2016
PMID: 26979330
Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1.
Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N., Curr Biol 26(20), 2016
PMID: 27641773
The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.
Liao D, Chen X, Chen A, Wang H, Liu J, Liu J, Gu M, Sun S, Xu G., Plant Cell Physiol 56(4), 2015
PMID: 25535196
Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus.
Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M., Plant Physiol 167(3), 2015
PMID: 25560877
Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation.
Kojima T, Saito K, Oba H, Yoshida Y, Terasawa J, Umehara Y, Suganuma N, Kawaguchi M, Ohtomo R., Plant Cell Physiol 55(5), 2014
PMID: 24492255
Through the doors of perception to function in arbuscular mycorrhizal symbioses.
Bucher M, Hause B, Krajinski F, Küster H., New Phytol 204(4), 2014
PMID: 25414918
Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis.
Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran C, Bouzayen M, Bécard G, Combier JP., Plant Physiol 166(1), 2014
PMID: 25096975
Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R., New Phytol 204(4), 2014
PMID: 25168837
Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling.
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G., J Integr Plant Biol 56(12), 2014
PMID: 24975554
Control of arbuscular mycorrhiza development by nutrient signals.
Carbonnel S, Gutjahr C., Front Plant Sci 5(), 2014
PMID: 25309561
Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view.
Nathalie Leborgne-Castel, Bouhidel K., Front Plant Sci 5(), 2014
PMID: 25566303
Cell and developmental biology of arbuscular mycorrhiza symbiosis.
Gutjahr C, Parniske M., Annu Rev Cell Dev Biol 29(), 2013
PMID: 24099088
Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development.
Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, Findlay K, Wang TL, Parniske M., Plant J 75(1), 2013
PMID: 23627596

64 References

Daten bereitgestellt von Europe PubMed Central.

Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular arbuscular mycorrhizae in grasses
Alexander, Can. J. Bot. 67(), 1989
Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients
Arnon, Soil Sci. 50(), 1940
Binary Agrobacterium vectors for plant transformation.
Bevan M., Nucleic Acids Res. 12(22), 1984
PMID: 6095209
Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations.
Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386364
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D., Plant J. 64(6), 2010
PMID: 21143680
A new method for observing the morphology of vesicular-arbuscular mycorrhizae
Brundrett, Can. J. Bot. 62(), 1984
A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia.
Wegmuller S, Svistoonoff S, Reinhardt D, Stuurman J, Amrhein N, Bucher M., Plant J. 54(6), 2008
PMID: 18315538
Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation
Cox, New Phytol. 84(), 1980
A plant DNA minipreparation: version II
Dellaporta, Plant Mol. Biol. Rep. 1(), 1983
Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis.
Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M., Science 318(5848), 2007
PMID: 17932296
The effect of polyamines on endomycorrhizal infection of wild-type Pisum sativum, cv. Frisson (nod+myc+) and two mutants (nod-myc+ and nod-myc-)
Elghachtouli, Mycorrhiza 5(), 1995
PHYLIP (Phylogeny Inference Package) version 3.6
Felsenstein, Cladistics 5(), 1995
Characterization of the pea ENOD12B gene and expression analyses of the two ENOD12 genes in nodule, stem and flower tissue.
Govers F, Harmsen H, Heidstra R, Michielsen P, Prins M, van Kammen A, Bisseling T., Mol. Gen. Genet. 228(1-2), 1991
PMID: 1715970
Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels
Hamel, Mycorrhiza 9(), 2000
VsENBP1 regulates the expression of the early nodulin PsENOD12B.
Hansen AC, Busk H, Marcker A, Marcker KA, Jensen EO., Plant Mol. Biol. 40(3), 1999
PMID: 10437833
Cytoskeleton and cell wall function in penetration resistance.
Hardham AR, Jones DA, Takemoto D., Curr. Opin. Plant Biol. 10(4), 2007
PMID: 17627866
Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis.
Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ., Plant J. 61(3), 2009
PMID: 19912567
PLACE: a database of plant cis-acting regulatory DNA elements.
Higo K, Ugawa Y, Iwamoto M, Higo H., Nucleic Acids Res. 26(1), 1998
PMID: 9399873
Intracellular plant microbe associations: secretory pathways and the formation of perimicrobial compartments.
Ivanov S, Fedorova E, Bisseling T., Curr. Opin. Plant Biol. 13(4), 2010
PMID: 20471304
Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation.
Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T., Proc. Natl. Acad. Sci. U.S.A. 109(21), 2012
PMID: 22566631
Analysis of the subcellular localization, function, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1.
Jakoby MJ, Weinl C, Pusch S, Kuijt SJ, Merkle T, Dissmeyer N, Schnittger A., Plant Physiol. 141(4), 2006
PMID: 16766674
Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis.
Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M., Proc. Natl. Acad. Sci. U.S.A. 101(16), 2004
PMID: 15075387
GATEWAY vectors for Agrobacterium-mediated plant transformation.
Karimi M, Inze D, Depicker A., Trends Plant Sci. 7(5), 2002
PMID: 11992820
A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy.
Kloppholz S, Kuhn H, Requena N., Curr. Biol. 21(14), 2011
PMID: 21757354
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Co-option of a default secretory pathway for plant immune responses.
Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P., Nature 451(7180), 2008
PMID: 18273019
Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition.
Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C., Plant J. 9(2), 1996
PMID: 8820606
PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S., Nucleic Acids Res. 30(1), 2002
PMID: 11752327
RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula.
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R., J. Exp. Bot. 55(399), 2004
PMID: 15073217
Choosing BLAST options for better detection of orthologs as reciprocal best hits.
Moreno-Hagelsieb G, Latimer K., Bioinformatics 24(3), 2007
PMID: 18042555
Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated.
Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M., New Phytol. 181(4), 2009
PMID: 19140941
First encounters--deployment of defence-related natural products by plants.
Field B, Jordan F, Osbourn A., New Phytol. 172(2), 2006
PMID: 16995908
Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata
Paradi, Biol. Plant. 46(), 2003
Arbuscular mycorrhiza: the mother of plant root endosymbioses.
Parniske M., Nat. Rev. Microbiol. 6(10), 2008
PMID: 18794914
Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis.
Paszkowski U, Kroken S, Roux C, Briggs SP., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271140
Comparison of DNA sequences with protein sequences.
Pearson WR, Wood T, Zhang Z, Miller W., Genomics 46(1), 1997
PMID: 9403055
A phosphate transporter expressed in arbuscule-containing cells in potato.
Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M., Nature 414(6862), 2001
PMID: 11719809
Glomalean fungi from the Ordovician.
Redecker D, Kodner R, Graham LE., Science 289(5486), 2000
PMID: 10988069
Four hundred-million-year-old vesicular arbuscular mycorrhizae.
Remy W, Taylor TN, Hass H, Kerp H., Proc. Natl. Acad. Sci. U.S.A. 91(25), 1994
PMID: 11607500
A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae.
Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J., Genes Dev. 15(16), 2001
PMID: 11511543
Genome structure of the legume, Lotus japonicus.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S., DNA Res. 15(4), 2008
PMID: 18511435
The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction.
Scheres B, Van De Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A., Cell 60(2), 1990
PMID: 2297789
Specific effects of microRNAs on the plant transcriptome.
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D., Dev. Cell 8(4), 2005
PMID: 15809034
Highly specific gene silencing by artificial microRNAs in Arabidopsis.
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D., Plant Cell 18(5), 2006
PMID: 16531494
The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways.
Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N., Plant Cell 15(12), 2003
PMID: 14615598
Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH., Cell Struct. Funct. 29(2), 2004
PMID: 15342965
SNARE protein structure and function.
Ungar D, Hughson FM., Annu. Rev. Cell Dev. Biol. 19(), 2003
PMID: 14570579

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23452278
PubMed | Europe PMC

Suchen in

Google Scholar