Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species

Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM (2014)
Journal of Experimental Botany 65(13): 3579-3593.

Download
OA 888.38 KB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ;
Abstract / Bemerkung
C-4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C-3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C-4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C-3 species with related C-4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C-4 photosynthesis. However, a comparison between C-3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C-4 photosynthesis is still missing. An integrative analysis of all three C-4 subtypes has also not been possible to date, since no comparison has been available for closely related C-3 and PEP-CK C-4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C-3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C-4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C-4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C-4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C-4 cycle intermediates to other metabolic pathways, as critical components of C-4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C-4 species compared with C-3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M. maximus appears to be simpler than those of NAD-ME and NADP-ME plants.
Erscheinungsjahr
Zeitschriftentitel
Journal of Experimental Botany
Band
65
Zeitschriftennummer
13
Seite
3579-3593
ISSN
eISSN
PUB-ID

Zitieren

Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM. Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species. Journal of Experimental Botany. 2014;65(13):3579-3593.
Bräutigam, A., Schliesky, S., Külahoglu, C., Osborne, C. P., & Weber, A. P. M. (2014). Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species. Journal of Experimental Botany, 65(13), 3579-3593. doi:10.1093/jxb/eru100
Bräutigam, A., Schliesky, S., Külahoglu, C., Osborne, C. P., and Weber, A. P. M. (2014). Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species. Journal of Experimental Botany 65, 3579-3593.
Bräutigam, A., et al., 2014. Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species. Journal of Experimental Botany, 65(13), p 3579-3593.
A. Bräutigam, et al., “Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species”, Journal of Experimental Botany, vol. 65, 2014, pp. 3579-3593.
Bräutigam, A., Schliesky, S., Külahoglu, C., Osborne, C.P., Weber, A.P.M.: Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species. Journal of Experimental Botany. 65, 3579-3593 (2014).
Bräutigam, Andrea, Schliesky, Simon, Külahoglu, Canan, Osborne, Colin P., and Weber, Andreas P. M. “Towards an integrative model of C-4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C-4 species”. Journal of Experimental Botany 65.13 (2014): 3579-3593.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-15T10:55:23Z

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis.
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA., Mol Biol Evol 35(1), 2018
PMID: 29040657
Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C4 grasses.
Danila FR, Quick WP, White RG, Kelly S, von Caemmerer S, Furbank RT., J Exp Bot 69(5), 2018
PMID: 29300922
Natural Variation within a Species for Traits Underpinning C4 Photosynthesis.
Reeves G, Singh P, Rossberg TA, Sogbohossou EOD, Schranz ME, Hibberd JM., Plant Physiol 177(2), 2018
PMID: 29678862
Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R., J Exp Bot 69(14), 2018
PMID: 29529246
The role of alanine and aspartate aminotransferases in C4 photosynthesis.
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM., Plant Biol (Stuttg) (), 2018
PMID: 30126035
C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae).
Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U., J Exp Bot 68(2), 2017
PMID: 27660482
Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation.
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M., J Exp Bot 68(2), 2017
PMID: 27834209
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 68(2), 2017
PMID: 28110279
Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data.
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber AP., J Exp Bot 68(2), 2017
PMID: 28043950
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA., Evolution 71(6), 2017
PMID: 28395112
Strategies and tools to improve crop productivity by targeting photosynthesis.
Nuccio ML, Potter L, Stiegelmeyer SM, Curley J, Cohn J, Wittich PE, Tan X, Davis J, Ni J, Trullinger J, Hall R, Bate NJ., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808096
De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae).
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G., Front Plant Sci 8(), 2017
PMID: 29184562
Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber AP., Plant Physiol 170(1), 2016
PMID: 26530316
Photorespiration connects C3 and C4 photosynthesis.
Bräutigam A, Gowik U., J Exp Bot 67(10), 2016
PMID: 26912798
Finding the genes to build C4 rice.
Wang P, Vlad D, Langdale JA., Curr Opin Plant Biol 31(), 2016
PMID: 27055266
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 67(14), 2016
PMID: 27059273
A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis.
Huang P, Brutnell TP., Curr Opin Plant Biol 31(), 2016
PMID: 27078208
Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
Schuler ML, Mantegazza O, Weber AP., Plant J 87(1), 2016
PMID: 26945781
The Roles of Organic Acids in C4 Photosynthesis.
Ludwig M., Front Plant Sci 7(), 2016
PMID: 27242848
The draft genome of the C3 panicoid grass species Dichanthelium oligosanthes.
Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP., Genome Biol 17(1), 2016
PMID: 27793170
Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
Christin PA, Arakaki M, Osborne CP, Edwards EJ., Mol Biol Evol 32(4), 2015
PMID: 25582594
An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
Koteyeva NK, Voznesenskaya EV, Edwards GE., Plant Sci 235(), 2015
PMID: 25900567
Insights into C4 metabolism from comparative deep sequencing.
Burgess SJ, Hibberd JM., Curr Opin Plant Biol 25(), 2015
PMID: 26051034
Discovering New Biology through Sequencing of RNA.
Weber AP., Plant Physiol 169(3), 2015
PMID: 26353759
Phylogeny and photosynthesis of the grass tribe Paniceae.
Washburn JD, Schnable JC, Davidse G, Pires JC., Am J Bot 102(9), 2015
PMID: 26373976
Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species.
Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Bräutigam A, Weber AP., Plant Cell 26(8), 2014
PMID: 25122153
The evolutionary ecology of C4 plants.
Christin PA, Osborne CP., New Phytol 204(4), 2014
PMID: 25263843

81 References

Daten bereitgestellt von Europe PubMed Central.

Mitochondrial respiration in relation to photosynthetic C acid decarboxylation in C species
Agostino A, Heldt HW, Hatch MD., 1996
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
2 Different mechanisms for transport of pyruvate into mesophyll chloroplasts of C plants—a comparative-study
Aoki N, Ohnishi J, Kanai R., 1992
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
Reference genome sequence of the model plant Setaria.
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM., Nat. Biotechnol. 30(6), 2012
PMID: 22580951
Phylogenomics of C(4) photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence.
Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA., Mol. Biol. Evol. 26(8), 2009
PMID: 19461115
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Transport processes—connecting the reactions of C photosynthesis:
Bräutigam A, Weber APM., 2011
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans.
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J., Science 337(6090), 2012
PMID: 22628558
Intracellular location of phosphoenolpyruvate carboxykinase and other C photosynthetic enzymes in mesophyll and bundle sheath protoplasts of Panicum maximum
Chapman KSR, Hatch MD., 1983
Anatomical enablers and the evolution of C photosynthesis in grasses
Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ., 2013
Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, Jiang N, Robin Buell C., Plant J. 71(3), 2012
PMID: 22443345
C₄ photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait.
Denton AK, Simon R, Weber AP., Curr. Opin. Plant Biol. 16(3), 2013
PMID: 23510604
Variation in Quantum Yield for CO(2) Uptake among C(3) and C(4) Plants.
Ehleringer J, Pearcy RW., Plant Physiol. 73(3), 1983
PMID: 16663257
Operation of the glycolate pathway in isolated bundle sheath strands of maize and Panicum maximum
Farineau J, Lelandais M, Morot-Gaudry JF., 1984
Photosynthetic oxygen exchange in attached leaves of C monocotyledons
Furbank RT, Badger MR., 1982
A plastidial sodium-dependent pyruvate transporter.
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K., Nature 476(7361), 2011
PMID: 21866161
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins.
Grass Phylogeny Working Group II, Aliscioni S, Bell HL, Besnard G, Christin PA, Columbus J, Duvall MR, Edwards EJ, Giussani L, Hasenstab-Lehman K, Hilu KW, Hodkinson TR, Ingram AL, Kellogg EA, Mashayekhi S, Morrone O, Osborne CP, Salamin N, Schaefer H, Spriggs E, Smith SA, Zuloaga F., New Phytol. 193(2), 2011
PMID: 22115274
Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana.
Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G., Mol. Microbiol. 51(2), 2004
PMID: 14756774
C photosynthesis—a unique blend of modified biochemistry, anatomy and ultrastructure
Hatch MD., 1987
Properties of phosphoenolpyruvate carboxykinase operative in C pathway photosynthesis
Hatch M, Mau S., 1977
Identification and functional expression of the mitochondrial pyruvate carrier.
Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC., Science 337(6090), 2012
PMID: 22628554
Using C4 photosynthesis to increase the yield of rice-rationale and feasibility.
Hibberd JM, Sheehy JE, Langdale JA., Curr. Opin. Plant Biol. 11(2), 2008
PMID: 18203653
CAP3: A DNA sequence assembly program.
Huang X, Madan A., Genome Res. 9(9), 1999
PMID: 10508846
The biochemistry of C photosynthesis
Kanai R, Edwards GE., 1999
BLAT--the BLAST-like alignment tool.
Kent WJ., Genome Res. 12(4), 2002
PMID: 11932250
The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M., Plant J. 65(1), 2010
PMID: 21175886
Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C plants. 4. Enzymes of respiratory metabolism and energy utilizing enzymes of photosynthetic pathways
Ku MSB, Edwards GE., 1975
Intracellular localization of phosphoenolpyrvatue carboxykinase in leaves of C and CAM plants
Ku MSB, Spalding MH, Edwards GE., 1980
The developmental dynamics of the maize leaf transcriptome.
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP., Nat. Genet. 42(12), 2010
PMID: 21037569
Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ., Plant Cell 22(11), 2010
PMID: 21081695
Cell-type-specific differentiation of chloroplasts in C4 plants.
Majeran W, van Wijk KJ., Trends Plant Sci. 14(2), 2009
PMID: 19162526
Engineering photosynthesis in plants and synthetic microorganisms.
Maurino VG, Weber AP., J. Exp. Bot. 64(3), 2012
PMID: 23028016
Significant involvement of PEP-CK in carbon assimilation of C4 eudicots.
Muhaidat R, McKown AD., Ann. Bot. 111(4), 2013
PMID: 23388881
Differentiation of photorespiratory activity between mesophyll and bundle sheath cells of C plants 1. Glycine oxidation by mitochondria
Ohnishi J, Kanai R., 1983
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
Mitochondrial phosphate transport. Import of the H+/Pi symporter and role of the presequence.
Pratt RD, Ferreira GC, Pedersen PL., J. Biol. Chem. 266(2), 1991
PMID: 1985946

AUTHOR UNKNOWN, 2012
The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2.
Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber AP., Plant J. 35(3), 2003
PMID: 12887583
The evolution of C photosynthesis
Sage RF., 2004
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
RNA-Seq Assembly - Are We There Yet?
Schliesky S, Gowik U, Weber AP, Brautigam A., Front Plant Sci 3(), 2012
PMID: 23056003
BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA.
Schomburg I, Chang A, Placzek S, Sohngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203881
Pfam: a comprehensive database of protein domain families based on seed alignments.
Sonnhammer EL, Eddy SR, Durbin R., Proteins 28(3), 1997
PMID: 9223186
Plasmodesmata density in vascular bundles in leaves of C grasses grown at different light conditions in respect to photosynthesis and photosynthate export efficiency
Sowinski P, Bilska A, Baranska K, Fronk J, Kobus P., 2007
Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves
Stitt M, Heldt HW., 1985
Functional analysis of chloroplastic dicarboxylate transporters in maize
Taniguchi Y, Taniguchi M, Nagasaki J, Kawasaki M, Miyake H, Sugiyama T., 2003
De novo transcriptome assembly for the tropical grass Panicum maximum Jacq.
Toledo-Silva G, Cardoso-Silva CB, Jank L, Souza AP., PLoS ONE 8(7), 2013
PMID: 23923022
The age of the grasses and clusters of origins of C photosynthesis
Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA., 2008
Phosphoenolpyruvate carboxykinase from higher plants: purification from cucumber and evidence of rapid proteolytic cleavage in extracts from a range of plant tissues
Walker R, Trevanion S, Leegood R., 1995
Phosphoenolpyruvate carboxykinase in C plants: its role and regulation
Walker RP, Acheson RM, Tecsi LI, Leegood RC., 1997
Three distinct biochemical subtypes of C photosynthesis? A modelling analysis
Wang Y, Bräutigam A, Weber APM, Zhu XG., 2014
The role of membrane transport in metabolic engineering of plant primary metabolism.
Weber AP, Brautigam A., Curr. Opin. Biotechnol. 24(2), 2012
PMID: 23040411
Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing.
Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB., Plant Physiol. 144(1), 2007
PMID: 17351049
Complex RNA maturation in chloroplasts. The psbB operon from spinach.
Westhoff P, Herrmann RG., Eur. J. Biochem. 171(3), 1988
PMID: 2831053
Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize
Wingler A, Walker RP, Chen ZH, Leegood RC., Plant Physiol. 120(2), 1999
PMID: 10364405

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24642845
PubMed | Europe PMC

Suchen in

Google Scholar