Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J (2016)
Plant Cell 28(1): 102-129.

Download
OA 2.08 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Erscheinungsjahr
Zeitschriftentitel
Plant Cell
Band
28
Zeitschriftennummer
1
Seite
102-129
ISSN
eISSN
PUB-ID

Zitieren

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell. 2016;28(1):102-129.
Bernsdorff, F., Döring, A. - C., Gruner, K., Schuck, S., Bräutigam, A., & Zeier, J. (2016). Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 28(1), 102-129. doi:10.1105/tpc.15.00496
Bernsdorff, F., Döring, A. - C., Gruner, K., Schuck, S., Bräutigam, A., and Zeier, J. (2016). Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell 28, 102-129.
Bernsdorff, F., et al., 2016. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 28(1), p 102-129.
F. Bernsdorff, et al., “Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways”, Plant Cell, vol. 28, 2016, pp. 102-129.
Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A., Zeier, J.: Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell. 28, 102-129 (2016).
Bernsdorff, Friederike, Döring, Anne-Christin, Gruner, Katrin, Schuck, Stefan, Bräutigam, Andrea, and Zeier, Jürgen. “Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways”. Plant Cell 28.1 (2016): 102-129.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-15T10:41:47Z

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Primed primary metabolism in systemic leaves: a functional systems analysis.
Schwachtje J, Fischer A, Erban A, Kopka J., Sci Rep 8(1), 2018
PMID: 29317679
Ratoon rice generated from primed parent plants exhibit enhanced herbivore resistance.
Ye M, Song YY, Baerson SR, Long J, Wang J, Pan Z, Lin WX, Zeng RS., Plant Cell Environ 40(5), 2017
PMID: 28042888
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato.
Fujita M, Kusajima M, Okumura Y, Nakajima M, Minamisawa K, Nakashita H., Biosci Biotechnol Biochem 81(8), 2017
PMID: 28569642
Elicitor-Induced Biochemical and Molecular Manifestations to Improve Drought Tolerance in Rice (Oryza sativa L.) through Seed-Priming.
Samota MK, Sasi M, Awana M, Yadav OP, Amitha Mithra SV, Tyagi A, Kumar S, Singh A., Front Plant Sci 8(), 2017
PMID: 28634483
Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response.
Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM., Front Plant Sci 8(), 2017
PMID: 28848581
Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens.
Garcia-Seco D, Chiapello M, Bracale M, Pesce C, Bagnaresi P, Dubois E, Moulin L, Vannini C, Koebnik R., Sci Rep 7(1), 2017
PMID: 28860643
Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J., Mol Plant 9(5), 2016
PMID: 26802249
Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions.
Tenenboim H, Brotman Y., Trends Plant Sci 21(9), 2016
PMID: 27185334
Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S., Front Plant Sci 7(), 2016
PMID: 27375664
Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.
Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM., Front Plant Sci 7(), 2016
PMID: 27379119
The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.
Zhang Q, Li Y, Xu T, Srivastava AK, Wang D, Zeng L, Yang L, He L, Zhang H, Zheng Z, Yang DL, Zhao C, Dong J, Gong Z, Liu R, Zhu JK., Cell Discov 2(), 2016
PMID: 27551435

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26672068
PubMed | Europe PMC

Suchen in

Google Scholar