Photorespiration connects C-3 and C-4 photosynthesis

Bräutigam A, Gowik U (2016)
Journal of Experimental Botany 67(10): 2953-2962.

Download
OA 6.67 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
Changes in the expression of photorespiratory genes induce and establish important phases of C-4 evolution.C-4 plants evolved independently more than 60 times from C-3 ancestors. C-4 photosynthesis is a complex trait and its evolution from the ancestral C-3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C-4 pathway is more efficient than C-3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C-4 evolution that not only includes the avoidance of photorespiration as the major driving force for C-4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C-3 to C-4.
Erscheinungsjahr
Zeitschriftentitel
Journal of Experimental Botany
Band
67
Zeitschriftennummer
10
Seite
2953-2962
ISSN
eISSN
PUB-ID

Zitieren

Bräutigam A, Gowik U. Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany. 2016;67(10):2953-2962.
Bräutigam, A., & Gowik, U. (2016). Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany, 67(10), 2953-2962. doi:10.1093/jxb/erw056
Bräutigam, A., and Gowik, U. (2016). Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany 67, 2953-2962.
Bräutigam, A., & Gowik, U., 2016. Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany, 67(10), p 2953-2962.
A. Bräutigam and U. Gowik, “Photorespiration connects C-3 and C-4 photosynthesis”, Journal of Experimental Botany, vol. 67, 2016, pp. 2953-2962.
Bräutigam, A., Gowik, U.: Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany. 67, 2953-2962 (2016).
Bräutigam, Andrea, and Gowik, Udo. “Photorespiration connects C-3 and C-4 photosynthesis”. Journal of Experimental Botany 67.10 (2016): 2953-2962.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-15T10:29:46Z

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis.
Bianconi ME, Dunning LT, Moreno-Villena JJ, Osborne CP, Christin PA., J Exp Bot 69(8), 2018
PMID: 29394370
Photosynthesis in C3-C4 intermediate Moricandia species.
Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber AP., J Exp Bot 68(2), 2017
PMID: 28110276
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 68(2), 2017
PMID: 28110279
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA., Evolution 71(6), 2017
PMID: 28395112
C3 -C4 intermediates may be of hybrid origin - a reminder.
Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW., New Phytol 215(1), 2017
PMID: 28397963
De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae).
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G., Front Plant Sci 8(), 2017
PMID: 29184562
Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis.
Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Pyšek P, Sorrell BK, Whigham DF, Brix H., Front Plant Sci 8(), 2017
PMID: 29250081
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 67(14), 2016
PMID: 27059273
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson JK, Bianconi M, Besnard G, Dunning LT, Lundgren MR, Holota H, Vorontsova MS, Hidalgo O, Leitch IJ, Nosil P, Osborne CP, Christin PA., Mol Ecol 25(24), 2016
PMID: 27862505

91 References

Daten bereitgestellt von Europe PubMed Central.

Pattern formation in the vascular system of monocot and dicot plant species.
Scarpella E, Meijer AH., New Phytol. 164(2), 2004
PMID: IND43654247
Polar auxin transport and patterning: grow with the flow.
Scheres B, Xu J., Genes Dev. 20(8), 2006
PMID: 16618803
Evolution of C4 photosynthesis in the genus flaveria: establishment of a photorespiratory CO2 pump.
Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P., Plant Cell 25(7), 2013
PMID: 23847152

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
Wang Y, Brautigam A, Weber AP, Zhu XG., J. Exp. Bot. 65(13), 2014
PMID: 24609651
Quantity and kinetic properties of ribulose 1,5-bisphosphate carboxylase in C3, C4, and C3–C4 intermediate species of Flaveria (Asteraceae)
Wessinger, Plant and Cell Physiology 30(), 1989
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis.
Williams BP, Johnston IG, Covshoff S, Hibberd JM., Elife 2(), 2013
PMID: 24082995

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26912798
PubMed | Europe PMC

Suchen in

Google Scholar