Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data

Denton AK, Mass J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM (2017)
Journal of Experimental Botany 68(2): 147-160.

Download
OA 21.19 MB
Journal Article | Original Article | Published | English
Author
; ; ; ; ;
Abstract
The high efficiency of C-4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, we enriched C-4 tissues along a developing leaf gradient. This method treats both C-4 tissues in an integrity-preserving and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and weaknesses of different C-4 tissue separation techniques. While the method reported here achieves the least enrichment, it is the only one that shows neither strong 3' (degradation) bias, nor different severity of 3' bias between samples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C-4 cycle model, and a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full comparative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consistencies and their conflicts.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Denton AK, Mass J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. Journal of Experimental Botany. 2017;68(2):147-160.
Denton, A. K., Mass, J., Külahoglu, C., Lercher, M. J., Bräutigam, A., & Weber, A. P. M. (2017). Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. Journal of Experimental Botany, 68(2), 147-160. doi:10.1093/jxb/erw463
Denton, A. K., Mass, J., Külahoglu, C., Lercher, M. J., Bräutigam, A., and Weber, A. P. M. (2017). Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. Journal of Experimental Botany 68, 147-160.
Denton, A.K., et al., 2017. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. Journal of Experimental Botany, 68(2), p 147-160.
A.K. Denton, et al., “Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data”, Journal of Experimental Botany, vol. 68, 2017, pp. 147-160.
Denton, A.K., Mass, J., Külahoglu, C., Lercher, M.J., Bräutigam, A., Weber, A.P.M.: Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. Journal of Experimental Botany. 68, 147-160 (2017).
Denton, Alisandra K., Mass, Janina, Külahoglu, Canan, Lercher, Martin J., Bräutigam, Andrea, and Weber, Andreas P. M. “Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data”. Journal of Experimental Botany 68.2 (2017): 147-160.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-12-15T10:15:13Z

This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays.
Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D., New Phytol 218(2), 2018
PMID: 29451311
C4 photosynthesis: 50 years of discovery and innovation.
von Caemmerer S, Ghannoum O, Furbank RT., J Exp Bot 68(2), 2017
PMID: 28110274
Maize-leaf PPDK regulatory protein isoform-2 is specific to bundle-sheath chloroplasts and paradoxically lacks a Pi-dependent PPDK activation activity.
Chastain CJ, Baird LM, Walker MT, Bergman CC, Novbatova GT, Mamani-Quispe CS, Burnell JN., J Exp Bot (), 2017
PMID: 29281064

68 References

Data provided by Europe PubMed Central.

Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II.
Rokka A, Suorsa M, Saleem A, Battchikova N, Aro EM., Biochem. J. 388(Pt 1), 2005
PMID: 15638811
Structural organization of photosynthetic apparatus in agranal chloroplasts of maize.
Romanowska E, Kargul J, Powikrowska M, Finazzi G, Nield J, Drozak A, Pokorska B., J. Biol. Chem. 283(38), 2008
PMID: 18632664
RNA-seq: impact of RNA degradation on transcript quantification.
Gallego Romero I, Pai AA, Tung J, Gilad Y., BMC Biol. 12(), 2014
PMID: 24885439
In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts.
Rudolf M, Machettira AB, Groß LE, Weber KL, Bolte K, Bionda T, Sommer MS, Maier UG, Weber AP, Schleiff E, Tripp J., Mol Plant 6(3), 2013
PMID: 23204504
Exploiting the engine of C(4) photosynthesis.
Sage RF, Zhu XG., J. Exp. Bot. 62(9), 2011
PMID: 21652533
Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays.
Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM, Buell CR, de Leon N, Kaeppler SM., PLoS ONE 8(4), 2013
PMID: 23637782
contamDE: differential expression analysis of RNA-seq data for contaminated tumor samples.
Shen Q, Hu J, Jiang N, Hu X, Luo Z, Zhang H., Bioinformatics 32(5), 2016
PMID: 26556386
Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI).
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR., Metabolomics 3(3), 2007
PMID: 24039616
Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes.
Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T., J. Exp. Bot. 65(13), 2014
PMID: 24790109
Gramene 2016: comparative plant genomics and pathway resources.
Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D'Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D., Nucleic Acids Res. 44(D1), 2016
PMID: 26553803

AUTHOR UNKNOWN, 0
Phosphoenolpyruvate carboxykinase from higher plants: purification from cucumber and evidence of rapid proteolytic cleavage in extracts from a range of plant tissues
Walker, Planta 196(), 1995
Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
Wang Y, Brautigam A, Weber AP, Zhu XG., J. Exp. Bot. 65(13), 2014
PMID: 24609651

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 28043950
PubMed | Europe PMC

Search this title in

Google Scholar